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Chapter 1

Introduction

1.1 Vision at the Molecular Level
Vision is one of the most fundamental processes in biology and has fascinated scien-
tists for centuries. In the 19th century, Thomas Young and Hermann von Helmholtz
developed their theory of trichromatic color vision, namely, that primate color vision
is due to the existence of three types of photoreceptors in the retina, which are sen-
sitive to red, green, and blue light. The pioneer in the scientific study of the visual
process at the molecular level was George Wald who, in the 1930’s, discovered the
function of vitamin A in vision and why its deficiency causes night blindness. He
later made considerable advances in unraveling the chemical process of vision, for
which he was awarded The Nobel Prize in Physiology or Medicine in 1967 [1]. Still
today, the visual process is the subject of intensive investigation since the mechanism
at the molecular level is not fully understood [2–30].

Vision is highly adaptive to light intensity and operates over a range of almost 8
orders of magnitude. This is achieved by having two types of photoreceptor cell in
the retina, rods and cones, responsible for dim light and color vision, respectively. In
the retina, there around 130 million photoreceptor cells, with the rods outnumbering
the cones by a factor of around 20. There is only one type of rod cells while, in
trichromats like humans, there are three types of cone cells, red, green, and blue,
which facilitate color discrimination. The rods are able to detect a single photon
while the cones are a factor of 100 less sensitive. However, the rods saturate at a
low intensity of around 1000 photons per second while the cones are able to operate
up to an intensity of 100 million photons per second. Therefore, most of the time,
primates make use of the cones for visual perception, which enable color vision,
while the rods take over in dim light, resulting in loss of color vision.

At the molecular level, the process of vision is regulated by the visual opsins pig-
ments, which are the transmembrane proteins located in the rods and cones. These
proteins absorb light and initiate the visual transduction process. Rhodopsin is the
visual opsin in the rods while, in the cones, we have the red, green, and blue-cone
opsins. Specifically, the opsins are located in membrane disks, which are flat vesicles
located in the outer segments of the rod and cone cells. As depicted in Figure 1.1,
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1 Introduction

we can think of the rod outer segment as a cylindrical container, between 30 to 60
µm in length and 1.4 to 10 µm in diameter, stacked with about 1000 membrane
disk, each containing of the order of 100 thousand embedded Rhodopsin proteins.
Therefore, with around 130 millon rod cells in the eye, each with about 100 million
Rhodopsins, the total number of Rhodopsins in the eye is on the order of 1016.

Outer 
segment

Inner 
segment

Nucleus

Synaptic
terminal

Light comes
in from this  
direction

Membrane 
disks (~1000)

Each disk has 
~ 105 Rhodopsins

Rod cells
~130 million
in the eye

Figure 1.1: The rod photoreceptor cell (adapted from Ref. 31).

All the opsins have the same global structure of seven α-helices that span the
membrane while their amino acid sequences differ. Remarkably, most visual opsins
contain the same photosensitive molecule, the 11-cis retinal chromophore, and it is
only the difference in protein environment that tunes their absorption. For example,
in the cone opsins, the absorption maximum is tuned from the red (560 nm / 2.21
eV) to the blue (420 nm / 2.95 eV) over an impressive range of almost 140 nm (0.75
eV) while Rhodopsin falls in the middle with an absorption maximum at about 498
nm (2.49 eV).

Another fascinating aspect of the opsins is the primary event in vision, that is, the
photoisomerization of the retinal chromophore, which initiates the visual transduc-
tion process. Upon absorption of light, the retinal chromophore undergoes excited-
state cis–trans isomerization of one of its double bond, which results in the all-trans
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1.1 Vision at the Molecular Level

retinal chromophore. In Rhodopsin, this is ultrafast and completed within 200 fs as
well as highly efficient with a high quantum yield of 67% for the final photoprod-
uct. The local geometrical change of the chromophore inside the constrained protein
pocket induces then large-scale changes in the overall structure of the protein. These
structural changes result in a series of distinct intermediate with different absorption
maxima and lead to the active state of Rhodopsin, meta II, which activates further
signaling pathways inside the membrane. Finally, the protein and the retinal chro-
mophore dissociate and, only after a series of chemical reactions, the Rhodopsin
protein is regenerated. It is here where the connection between vitamin A defi-
ciency and night blindness enters into the story: The retinal chromophore is derived
from vitamin A, and insufficient supply of vitamin A inhibits the regeneration of
Rhodopsin, leading to night blindness.

Over several decades, significant research effort has been devoted to further our
understanding of the molecular mechanism underlying the complex functioning of
the visual opsins as it testified by the numerous experimental [2–30] and theoreti-
cal [32–45] studies which have mainly focused on Rhodopsin. In particular, bovine
Rhodopsin has been characterized very well experimentally, mainly because it can
be easily extracted from cattle eyes, of which there is almost an endless supply from
slaughterhouses due to human craving of beef. For example, for bovine Rhodopsin,
there are numerous crystallographic structures available [27–30] while, for the other
visual opsins, there are almost no crystallographic structures available. For the hu-
man cone opsins, there are homological models based on Rhodopsin but, given the
low sequence identity between the cone opsins and Rhodopsin, they might not be
sufficiently accurate.

In this thesis, we investigate Rhodopsin from a theoretical point of view and
focus on the description of its absorption properties from first principles. To achieve
this goal, due to complexity of the system, we have to employ a multiscale approach
and a hierarchy of theoretical techniques to bridge between the smaller scale of the
photosensitive chromophore and the much larger environment given by the protein
embedded in its membrane, as we describe in Chapter 2.

One may ask why we focus on absorption. First, understanding which inter-
actions of the chromophore-protein complex affect the Rhodopsin absorption spec-
trum will greatly help to elucidate the more general aspect of spectral tuning in
visual opsins. Second, Rhodopsin can be considered the exemplar photosensitive
biosystem as it displays all possible complications which render its theoretical de-
scription extremely challenging. As it is explained below, the electronic charge in
the retinal chromophore responds rather strongly to photo-excitation and is signif-
icantly affected by the surrounding environment. Moreover, a realistic description
of the structure of the chromophore in the protein pocket is essential to capture the
response of the system to light. Therefore, if our theoretical tools are able to provide
an accurate description of the absorption properties of Rhodopsin, we will be in a
position to tackle almost any photosensitive system.

However, after a quick inspection of the abundant theoretical literature on the
subject, another legitimate question the reader may have is why we should revisit
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1 Introduction

the theoretical description of the absorption of Rhodopsin at all. This problem has
in fact already been considered in numerous theoretical studies, which have often
claimed remarkable agreement with experiments. Therefore, is this problem already
solved? Should we not move on to other opsins? As we discuss in detail later in
this Chapter, a closer look at previous theoretical studies on Rhodopsin reveals that
things are not so clear, and that the problem is not at all solved.

In the following, we will begin by describing the structure of Rhodopsin and of
the retinal chromophore. We will also explain the nature of the excitation of the
chromophore and how the interaction between the protein and the chromophore can
tune its absorption. We will then briefly summarize previous results and, finally,
describe the results obtained in this thesis.

1.2 Rhodopsin

cytoplasmic surface

extracellular surface

protein
pocket

Retinal
chromophore

m
em

br
an

e

Figure 1.2: The global structure of Rhodopsin consists of seven α-helices that span
the membrane. We indicate the approximate range of the membrane and show the
retinal chromophore inside the protein pocket.
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1.2 Rhodopsin

Rhodopsin [22–26] consists of 348 amino acids residues, of which 65% are lo-
cated in the transmembrane region. As shown in Figure 1.2, the global structure is
mainly given by seven α-helices that span the membrane and vary in length from 20
to 33 residues. The helices are connected by three loops, both on the cytoplasmic
(inside the membrane) and the extracellular (outside the membrane) surfaces. Fur-
thermore, on the cytoplasmic surface, there is a short α-helix, that lies parallel to the
membrane. The length of Rhodopsin is about 70 Å along the axis perpendicular to
the membrane while the diameter is about 30 to 40 Å.

The photosensitive 11-cis retinal chromophore is located inside a protein pocket
that is buried between the helices, close to the extracellular surface, and covered by
one of the loops on the extracellular side. The environment of the chromophore in
the protein pocket is largely hydrophobic, although there are some polar residues
nearby.

Counter-ion
Glu113

!-ionone 
ring

Protonated 
Schiff base

⊕
⊖C11

C12

Link to the 
protein (Lys296)

Figure 1.3: The retinal chromophore and the glutamic acid counter-ion (Glu113)
inside the protein pocket in Rhodopsin.

As shown in Figures 1.3 and 1.4a, the retinal chromophore consists of a con-
jugated chain, which extends from the N16 nitrogen towards the C5 carbon, and a
β-ionone ring. In the protein, the retinal chromophore is covalently linked to a lysine
residue (Lys296) via a protonated Schiff base linkage. All the double bonds along
the conjugated chain are in a trans configuration, except the C11–C12 bond that is
in a cis configuration.

Due to the protonated Schiff base, the chromophore is positively charged with
most of the charge localized around the nitrogen. Therefore, a negatively charged
glutamic acid counter-ion (Glu113) is located in close proximity of the protonated
Schiff base, at around 3 Å distance from the nitrogen. This counter-ion stabilizes the
proton on the chromophore by increasing the pKa of the Schiff base to more than 15.
Furthermore, as we discuss in more detail below, the counter-ion has an important
role in the spectral tuning, blue-shifting the absorbance of the isolated chromophore.
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1 Introduction

1.3 The Spectral Tuning

All visual opsins have the same global protein structure of seven transmembrane α-
helices, and most of them also incorporate the same chromophore, that is, the retinal
chromophore. Differences in the amino acid sequence and the resulting changes in
the interaction between the chromophore and the protein modulate the absorption
maximum over a wide range in the visible spectrum, from 420 to 590 nm. For
example, let us consider the human red, green, and blue-cone opsins which have
absorption maxima of 560 nm, 530 nm, and 420 nm, respectively. The red and
green cone opsins are rather similar and differ only in 15 amino acids, which results
in a 30 nm difference in the absorption maxima. On the other hand, the red and blue
cone opsins have only a sequence identity of 43% and, perhaps not surprisingly,
are characterized by a 140 nm difference between them. Then, compared to bovine
Rhodopsin, the red, green, and blue opsin have amino acid sequence identity of 37%,
38%, and 41%, respectively.

Before we discuss how the interaction with the protein environment tunes the ab-
sorption of the retinal chromophore, we need to understand the nature of the excita-
tion of the isolated chromophore. As previously mentioned, the retinal chromophore
is positivity charged with most of the charge localized around the nitrogen on the
protonated Schiff base when the system is in the ground state. As shown in Fig-
ure 1.4, in a simple orbital picture, the highest occupied molecular orbital (HOMO)
is a bonding π orbital delocalized on the conjugated chain of the chromophore while
the lowest unoccupied molecular orbitals (LUMO) is an anti-bonding π∗ orbital. The
bright excited state is mainly a HOMO to LUMO transition or a π to π∗ excitation,
and results in a transfer of positive charge along the chain of the chromophore, from
the protonated Schiff base towards the β-ionone ring. This is clearly seen in Fig-
ure 1.4, where the difference between the excited- and the ground-state density is
shown.

When going from the gas phase to the protein, a factor which affects the ab-
sorption properties is the geometrical distorsion. In the gas phase, the isolated
chromophore is characterized by a planar conjugated chain while, inside the pro-
tein pocket, steric interactions distort the chromophore from planarity. This leads
to a shorter effective length of the conjugated chain and, as expected from a simple
particle-in-a-box reasoning, a blue shift in absorption. Depending on the presence
of either less or more bulky amino acids in the protein pocket, the steric interaction
will differ between opsins and, consequently, the degree of distortion of the chro-
mophore will also be different. The resulting shorter or longer effective length of the
chain can therefore modulate the absorption between different opsins. Furthermore,
the conjugated chain of the chromophore extends into the β-ionone ring, so the ab-
sorption will also be affected by the twisting of the ring, which is also determined
by steric effects in the protein pocket.

A more important factor of the spectral tuning is the polarization of the chro-
mophore resulting from the electrostatic interaction with the protein. Due to the
large difference between the charge distribution of the ground and excited states
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1.3 The Spectral Tuning

HOMO /  π LUMO /  π∗

Transfer of positive charge from 
protonated Schiff base towards 

!-ionone ring

b

c

hν

a

!-ionone ring

Link to the 
protein (Lys296)

Protonated 
Schiff base

C11 C12

C10

C9
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Figure 1.4: a) The retinal chromophore; b) the highest occupied (HOMO) and low-
est unoccupied (LUMO) molecular orbitals; c) difference between the excited- and
ground-state densities.
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1 Introduction

of the chromophore, this effect can be significant. This can be most easily under-
stood by considering the effect of the counter-ion on the excitation energy of the
system. As discussed above, the chromophore is positively charged with most of the
charge localized around the protonated Schiff base in the ground state, and near the
β-ionone ring in the excited state as a result of photo-induced charge transfer. The
presence of a negative charge near the protonated Schiff base, like the one provided
by the counter-ion, will stabilize the ground state more than the excited state. This
will tend to open the gap and will lead to a blue shift as compared to the isolated
chromophore. Consequently, the distance between the protonated Schiff base and
the counter-ion, which might differ between opsins, can strongly modulate absorp-
tion as shorter distances will cause a more significant blue shift. On the other hand,
we expect that introducing a negative charge near the β-ionone ring will stabilize the
excited state more than the ground state, and therefore close the gap leading to a red
shift.

The rest of the protein environment will also affect the polarization of the chro-
mophore. Charged, polar, or polarizable amino acid residues in the protein pocket
will interact electrostatically with the chromophore and either stabilize more the
ground or the excited state, contributing to either a blue or a red shift, respectively.
Due to the variations in amino acid sequences between different opsins, the overall
electrostatic interaction between the protein and chromophore will be different, and
affect the absorption of the chromophore.

Moreover, we note that variations in the absorption maxima of some visual
opsins can be explained as due to differences in the photosensitive chromophore
itself. For example, it is thought that opsins absorbing in the ultra-violet range,
like in mouse eyes, have the retinal chromophore in a deprotonated (neutral) form,
which leads to an absorption maximum blue-shifted at approximately 360 nm. Fur-
thermore, visual opsins in some species are known to incorporate an 11-cis-3,4-
dehydroretinal chromophore with a longer conjugated chain due to an extra double
bond in the β-ionone ring, which shifts the absorption to the red, resulting for exam-
ple in a maximum as high as 630 nm.

Spectral tuning is therefore the complex combination of different effects, both
geometrical and electrostatic. Often, these factors counteract each other and it is
hard to discern between the different contributions to the final absorbance. In prin-
ciple, accurate theoretical calculations would be ideal to understand what affects the
photophysics of the chromophore, as they allow us to “play” with the system, for
instance by turning off or modifying specific amino acids in the surrounding of the
chromophore.

1.4 Theoretical Absorption of Rhodopsin: The
Right Answer for the Wrong Reason?

A breakthrough in Rhodopsin research came in the years 2000 to 2004 when high-
quality crystallographic structures became available [27–30]. This prompted a mul-
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1.4 Absorption of Rhodopsin: The Right Answer for the Wrong Reason?

titude of theoretical investigations aimed at describing the absorption of Rhodopsin
from first principle calculations [32–40]. Most of these studies report rather im-
pressive results with excitation energies that deviate by less than 0.1 eV from the
experimental absorption maximum at 2.49 eV. This good performance is quite re-
markable given that these studies often differ considerably in the theoretical ap-
proaches employed and normally resort to various approximations in the treatment
of the chromophore-protein system. In view of this apparent success, one is lead
to conclude that absorption in Rhodopsin is a solved problem and that achieving an
accurate theoretical description of the photophysics of a complex photobiological
system is routinely possible with nowadays computational techniques. In fact, this
thinking has prompted many authors of these studies to believe that they had cali-
brated their computational tools and could turn their attention to understanding the
absorption tuning between the different visual opsins, like the color opsins [42–45]

1.9 eV

2.2 eV

2.5 eV

2.8 eV

3.1 eV

3.4 eV

Isolated
Chromophore

Only 
Counter-ion

Full Protein
Protein

Electrostatic Environment

Ref. 35

much larger
blue-shift

quenching 
of blue-shift

smaller 
blue-shift

negligible 
effect

Ref. 34

same final
result!!

Figure 1.5: Absorption of Rhodopsin from Refs. 34 and 35. The excitation energies
are obtained with the structure of the chromophore relaxed in the protein, and with
different contributions of the electrostatic environment.

However, if we analyse more carefully the theoretical literature on Rhodopsin,
we quickly realize that the picture emerging is rather murky. For example, let us
consider the two prototypical studies of Refs. 34 and 35, which obtain excitation
energies of 2.47 eV and 2.42 eV, respectively, in rather good agreement with the ex-
perimental absorption maximum. To an eye untrained to the subtleties of theoretical
chemistry, these studies might seem rather similar as they start from the same crys-
tallographic structure and employ the same highly-correlated method to compute the
excitations. However, as shown in Figure 1.5, they reach very different conclusions
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1 Introduction

concerning the electrostatic effect of the protein environment on the excitation en-
ergy of the chromophore. In Ref. 34, the main effect of the protein is due to the
counter-ion, which induces a significant blue shift, while the rest of the protein en-
vironment has a negligible effect. On the other hand, Ref. 35 obtains a much larger
blue shift due to the counter-ion, which is then quenched by the rest of the protein
environment. Without going here into detail, we note that the critical difference be-
tween these two studies are the methods employed to obtain the ground-state geom-
etry of chromophore (the construction of a realistic structural model of Rhodopsin
will be a major focal point of this thesis).

The two investigations of Refs. 34 and 35 are just two examples but, if we were
to consider other studies, the picture would become even fuzzier and the faith of the
reader in first-principle calculations might be somewhat undermined. Since these
contradicting calculations cannot all be right, it is clear that the apparent agreement
with experiments is in most cases due to a favorable cancelation of errors. In short,
they obtain the right number for the wrong reasons. Therefore, it is also clear that
achieving an accurate theoretical description of the absorption of Rhodopsin is not
at all a solved problem. Ultimately, this observation leads us to the question: Which
theoretical ingredients are needed to achieve an accurate description? In this thesis,
we will revisit the absorption of Rhodopsin and try to provide an answer to this
question.

1.5 This Thesis

The work done in this thesis is rather broad and it may not be obvious to the reader
how the individual pieces fit together. In this section, we will therefore summarize
the content of the thesis, focusing on the more general picture.

To better understand this thesis, we need to explain which factors mostly influ-
ence the theoretical description of absorption in a photosensitive chromophore like
retinal. There are essentially two main aspects we need to pay particular attention
to: The choice of ground-state geometry and the method employed to compute the
excitation energies. For the ground-state geometries, a reasonable option is to use
density functional theory as it offers a good balance of accuracy and efficiency. This
is also our choice but has not been the most common choice in the retinal studies
of the last two decades. For the excitation energies, the choice of method is even
less clear since there is a multitude of approaches available, which often lead to very
different results even if we restrict ourselves to methods that are supposedly equally
sophisticated. I will not go here into details but only say that we have identified
a group of highly-correlated methods we believe are sufficiently accurate. Then,
when considering the protein environment, we have the additional complication of
how to describe the electrostatic interaction between the chromophore and the pro-
tein. As it is commonly done in the study of photobiological systems, we employ
a hybrid quantum mechanical in classical mechanics (QM/MM) scheme, where the
chromophore is treated with a quantum method and the protein environment with a
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1.5 This Thesis

classical description through the use of non-polarizable force fields. This results in
the approximation that the protein environment can polarize the chromophore but
cannot respond to the excitation of the chromophore.

Let us now focus on the thesis. Since previous studies give rather contradictory
pictures concerning the role of the protein environment in tuning the absorption in
Rhodopsin, we decided to start with something simpler, namely, the intrinsic absorp-
tion of the retinal chromophore in the gas phase, and only subsequently tackle the
complete chromophore-protein system. Removing the complications of the protein
allows us to thoroughly calibrate the theoretical methods employed to compute the
geometrical model and the excitation energies. These studies are the focus of the
first three Chapters and, as we will see, are an important part of the thesis since the
description of absorption in the gas phase turned out to be not that simple.

In Chapter 3, we construct gas-phase retinal models ranging from a minimal
model to the full 11-cis chromophore to investigate the performance of a wide
range of theoretical approaches in the description of the vertical excitation ener-
gies. This extensive comparison allows us to identify a group of highly-correlated
approaches (in particular, multi-reference perturbation and quantum Monte Carlo
methods), which provide a balanced description of dynamical and static correlation,
and a consistently accurate prediction of the excitation energies of retinal. These
findings are further confirmed in Chapter 4, where we revisit these retinal models
with a more recent flavor of many-body perturbation theory which includes two-
body interactions in the zero-order Hamiltonian. Importantly, through a calibration
of the methods employed to construct the ground-state structures, we also show that
the theoretical procedure commonly employed in the retinal investigations of the last
decade is in disagreement with more accurate approaches. Most gas-phase retinal
and Rhodopsin studies (as the one from Ref. 35 in Figure 1.5) use a low-correlation
technique, inferior to density functional theory, to compute the structure (i.e. the
complete-active-space self-consistent space method), in combination with an super-
seded perturbative approach to compute the excitation energies. We demonstrate
that both aspects of these previous calculations are totally inadequate to describe
retinal in the gas phase. Clearly, our findings cast severe doubts about the ability of
this commonly used procedure to describe absorption in the protein.

The results obtained in Chapters 3 and 4 allow us to estimate with a good degree
of confidence that the vertical excitation energy of the 11-cis retinal chromophore in
the gas phase is around 2.3 eV and, therefore, in disagreement with the experimen-
tal estimate of 2.0 eV obtained in photoinduced dissociation spectroscopy [46]. As
shown in Figure 1.6a, the photo-dissociation spectrum has a rather complex struc-
ture with a main peak around 2.0 eV and a shoulder which extents to higher energies.
Could it be that the main peak at lower energies corresponds to the adiabatic exci-
tation energy and the vertical excitation lies somewhere in the shoulder? This is of
course a possibility especially for a photo-reactive molecule as retinal but, before
launching into speculations, we need to describe some additional oddities regarding
the comparison between theory and photo-dissociation spectroscopy experiments on
the retinal chromophore.
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where Nneutrals is the number of neutrals corrected for the
small background, Nions the number of stored ions in the
ion bunch, ! the photoabsorption cross section, E the laser-
pulse energy, h" the photon energy, and C a constant which
depends on the experimental conditions (for example, ion-
laser-beam overlap).

In Figs. 4(b) and 4(c), we show the full absorption
spectrum of the two model chromophores including the
bands for S1 and S2. As explained earlier, we used two
different lasers in the S1 and S2 band regions. Hence, the
relative strength of the absorption is somewhat uncertain
because of the different laser-beam profiles. The data
obtained with the two different laser systems were scaled
to coincide in a wavelength region that was accessible to
both lasers.

The S1 bands show structures which are most likely due
to vibrational excitation in the S1 state. We will discuss this
in detail in a future report. Here we focus on the S2 bands.
For 11-cis dimethyl retinal, the S2 absorption band maxi-
mum is found at 390 nm, and the corresponding maximum
for the all-trans n-butyl retinal is at 385 nm. Thus, the two
chromophores have almost identical absorption maxima

for both the S1 and S2 bands. The obtained absorption
wavelengths and energies are summarized in Table I.
When the spectrum is recorded in a methanol solution
[Fig. 4(a)], the S1 band maximum is significantly blue-
shifted by more than 150 nm, and, importantly, there is no
clear sign of resolved S1 and S2 bands, emphasizing the
need for gas-phase experiments. The two model chromo-
phores of the present work give almost identical absorption
spectra in solution.

It is interesting to compare our results with earlier
measurements by Birge et al. on two-photon spectroscopy
of protonated all-trans retinal in the protein bacteriorho-
dopsin [10] and in a CCl4 solution [9]. We have marked the
location of the two-photon absorption maxima in Fig. 4(a)
(CCl4 solution). The S1 and S2 states nearly coincide here,
which probably explains the appearance of only one peak
in the present one-photon absorption measurement. On the
bottom part of Fig. 4, we mark the positions of three two-
photon maxima, recorded with bacteriorhodopsin [10].
The maxima observed at 568 and 488 nm were assigned
to excitation of the S1 state (Bu-like) and the S2 state
(Ag-like), respectively. A partially resolved third peak at
about 410 nm was not assigned to any particular state [10].
With the present data, it is tempting to suggest that the
observed 410 nm peak in bacteriorhodopsin might be due
to S2 (slightly redshifted), and the other peaks are blue-
shifted structures of the S0 ! S1 band. Further studies of
the two-photon absorption of bacteriorhodopsin at short
wavelength may be desirable to clarify this.

The present data may serve as a reference for theory.
Recently, the S1-S2 energy difference was calculated to
1.19 and 1.17 eV for all-trans and 11-cis retinal-model
chromophore cations, respectively [21]. This is in very
good agreement with the present experiment. The calcu-
lated excitation energies S0 ! S1=S2, on the other hand,
were both overestimated by about 0.3 eV [21].

The S1 and S2 states are of different electronic character.
At the S0 energy minimum geometry, the S1 state corre-
sponds to a Bu-like (hole-pair) state, while the S2 state
corresponds to an Ag-like covalently excited dark state.
The S0 ! S1 transition is associated with a charge-transfer
character where the positive charge at the Schiff base is
reduced upon excitation. This transition is optically al-
lowed with a high oscillator strength (f ! 0:8–0:9) [21].

FIG. 4 (color online). Absorption cross section in arbitrary
units as a function of the wavelength. (a) All-trans n-butyl
protonated Shiff-base retinal in a methanol solution with acetic
acid added to protonate the chromophore at the Schiff base;
(b) all-trans n-butyl protonated Shiff-base retinal in the gas
phase (see Fig. 1); (c) positively charged 11-cis dimethyl
Shiff-base retinal in the gas phase (see Fig. 1). Line marks
indicate the absorption maxima recorded by a previous two-
photon technique in solution (a) and the protein (c) (see text).

TABLE I. The S1 band origin is assumed to correspond to the
longest wavelength peak of the S0-S1 absorption band.

Retinal chromophore Transition # (nm) Energy (eV)

All-trans S0-S1 620 2.00
All-trans S0-S2 385 3.22
All-trans S1-S2 1017 1.22
11-cis S0-S1 610 2.03
11-cis S0-S2 390 3.18
11-cis S1-S2 1079 1.15
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phore analogues B and C (Figure 1)
both of which have a planar 6s-trans
C5=C6!C7=C8 moiety.[3] The
experimental absorption profile of
B is shown in Figure 2b. Interest-
ingly, both these compounds display
a clear peak (lmax is 618 nm (B) and
630 nm (C)) that falls in the red
edge of the native compound spec-
trum. In contrast, the recorded
absorption profile of the C5,C6-
dihydro retinal analogue D
(Figure 1), also shown in Figure 2b,
has a peak at 525 nm which is in the
blue side of the plateau. Compound
D lacks p-conjugation from the ring
end and is thus a model for a retinal
chromophore with a fully twisted b-ionone ring (and, in turn,
for a skewed highly twisted 6s-cis conformer). These results
suggest that the b-ionone ring is relatively free to rotate at
room temperature so that it explores essentially the whole
phase-space and excitation energies span all possible values
from fully twisted to fully planar conformations.

To support this scenario, the geometries of the conforma-
tional minima in both the native (A) and analogue (B–D)
compounds have been optimized at the CASSCF/6-31G*
level[12] and their S0 and S1 energies computed employing the
multireference perturbative CASPT2/ANO-s(C,N[4s3p1d]/
H[2s]) approach (Table 1).[10] Interestingly, the S0 energy
difference between the two optimized conformers (the

skewed 6s-cis with a highly twisted 688 b-ionone ring and
the planar 6s-trans) is very tiny in A (< 1 kcalmol!1), as was
previously recognized,[7a] but the spectroscopic implications
were not investigated. This finding reveals that both con-
formations may well be populated under the experimental
conditions thus giving the observed broad band: their
computed absorptions nicely match the edges of the recorded
band shown in Figure 2a. The energy difference, however, is
much higher in B (ca. 4 kcalmol!1), in favor of the fully planar
6s-trans conformer, which is then the more populated form:
this is responsible for the red-shifted and narrower and more-
defined absorption peaks observed in B and C. The agree-
ment with the experiments is remarkable for all the studied
systems.

New reference wavelengths for the intrinsic absorption of
the two RPSB conformers found in visual and archaeal
rhodopsins are thus derived, with maximums at approxi-
mately 530 (6s-cis) and 610 nm (6s-trans), respectively
(Figure 2a). It is apparent that only a small blue-shift is
observed on going from the gas-phase cationic chromophore
to bR (hR, sRI) or Rh (" 30 nm), it is almost negligible for the
M-cone pigment, and is even reversed for L (see Scheme 1).
Notably, this result reveals that opsin masks the counterion
and eliminates its electrostatic interaction with the cationic
chromophore, thus smoothing most of the counterions’s blue-
shifting activity. In addition, other protein dipoles that might
blue shift the absorption are not operative. However, there
are exceptions: sRII and the S-cone visual pigment absorb at

significantly blue-shifted values (Scheme 1). This finding
suggests that the counterion and protein dipoles are not
masked in these two cases, or alternatively, that a further
deconjugation in the chromophore chain occurs in the protein
pocket.

It is worth noting that to date no retinal protein has been
revealed that absorbs red shifted to the gas-phase 6s-trans
reference value of 610 nm. The “blue membrane” form of bR
absorbs at 605 nm while the most red-shifted intermediate
detected in bR photocycle (denoted as O) absorbs at
approximately 610 nm. It is apparent that in these species
the chromophore behaves as in the gas phase. In other words,
the electrostatic blue-shifting effect of the counterion[13] and

Figure 2. Measured gas-phase absorption cross sections in a) the
native protonated Schiff-base chromophore (A) and b) two analogues
(B and D: red and green peaks, respectively; the absorption of A is
also reported for comparison; dashed curve) measured with identical
laser settings (spectra are not normalized, but merely superimposed).
The blue (530 nm) and red (610 nm) sides (dashed vertical lines) of
the broad absorption maximum of the native compound (A) are taken
as the reference gas-phase absorption value for the planar 6s-trans and
the skewed 6s-cis conformers, respectively. Computed vertical S0!S1

transition energies for the models are found in Table 1.

Table 1: Computed ground state and vertical S0!S1 transition energies.[a]

Compound 6s-trans 6s-cis Absexp
E Abscalcd E Abscalcd

A 0.6 620, 46.2, 2.00 0.0 547, 52.3, 2.27 530–610, 46.9–54.0, 2.03–2.34
B 0.0 612, 46.7, 2.03 3.86 566, 50.5, 2.19 618, 46.3, 2.01
C[b] 642, 44.5, 1.93 630, 45.4, 1.97
D[c] Abscalcd : 514, 55.7, 2.41 525, 54.5, 2.36

[a] CASPT2/ANO-s ground-state relative energies (E, in [kcalmol!1]) and vertical S0!S1 absorptions
(Abscalcd in [nm], [kcalmol!1] , [eV]) are computed at the CASSCF/6-31G* level for optimized geometries
of the chromophores (A–D): a N-methyl terminal is used. Experimental absorption maxima (Absexp in
[nm], [kcalmol!1] , [eV]) are also reported. Underlined entries highlight the conformer(s) contributing to
the recorded values. [b] This molecule was synthesized as a 6s-trans form. [c] 6s-trans and 6s-cis
conformers cannot be assigned for D which exists as a single form, absorbing at the reported value
([nm], [kcalmol!1] , [eV]).
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Figure 1.6: Gas-phase photodissociation spectroscopy for retinal chromophores: a)
11-cis from 2006 [46]; b) all-trans from 2006 [46]; c) all-trans from 2010 [47].
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1.5 This Thesis

In the same experimental study [46], the authors also report a photo-dissociation
spectrum for a different retinal conformer, the all-trans retinal chromophore. As we
can see in Figure 1.6b, this spectrum is also rather broad with a main peak at about
2.0 eV and two additional shoulders, one extending at higher energies. Theoreti-
cally, we find that both conformers have a very similar vertical excitation energy of
about 2.3 eV. Consequently, the similar location of the absorption maximum in both
spectra would seem to consistently indicate either that we are too blue shifted with
respect to experiments or that vibronic effects are responsible for a similar red shift
of the maximum with respect to the theoretical vertical excitation. Surprisingly, in a
more recent study [47], the same experimental group has however produced another
dissociation spectra for the all-trans retinal with a totally different shape, as show
in Figure 1.6c. The new spectrum shows no structure but only a very flat plateau
extending over a wide range of wavelengths (from 530 to 610 nm). Not surpris-
ingly, the new spectrum was promptly explained in terms of thermal effects with
the help of calculations of the low-correlation type so commonly used for retinal.
The unusually broad features of the spectrum were interpreted as due to the rotation
of the β-ionone ring at room temperature between different conformers of retinal
characterized by different excitation energies.

In Chapter 5, we extensively investigate this scenario by combining ab initio
molecular dynamics simulations at room temperature with highly-correlated meth-
ods to refine the ground-state potential energy surface and the corresponding excita-
tion energies. Our calculations provide compelling evidence that thermal effect can-
not be responsible for the broad plateau observed experimentally. While it is unclear
why so different spectra have been reported by the same group for the same system,
we note that, also for Green Fluorescent Protein, there exist multiple experimental
photo-dissociation spectra with significantly different spectral shapes [48–51]. It is
also important to stress that dissociation spectroscopy does not directly measure the
optical absorption spectrum but rather the yield of photofragments resulting from
the electronic excitation the chromophore. Moreover, these experiments appear to
suffer from potential complications such as the possible presence of multi-photon
dissociation channels and the consequent non-trivial dependence of the shape of the
spectrum on the excitation laser power. Consequently, it is an open question (also
actively investigated by some experimental groups) whether these model experi-
ments are representative of the optical absorption of a given molecule. Our findings
indicate that the available spectra are not representative of the optical spectrum of
retinal in the gas phase and call for further experimental characterization of the dis-
sociation spectra. Finally, we want to stress that photo-dissociation experiments
with their uncertain interpretation has been rather harmful for the field of theoretical
photochemistry since these photo-dissociation spectra are available for several rel-
evant biological chromophores (e.g. retinal, Green Fluorescent Protein, Photoactive
Yellow Protein, DsRed) and are routinely used to benchmark different theoretical
excited-state methods and establish their relative accuracy.

Having calibrated our theoretical description of the structural model and exci-
tations of retinal in the gas phase, we can now introduce the protein environment
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1 Introduction

Figure 1.7: Rhodopsin dimer embedded in its native membrane from our simula-
tions.

and consider the absorption of Rhodopsin, which is the focus of Chapter 6. As
shown in Figure 1.7, we construct a realistic model of a Rhodopsin dimer embed-
ded in its native membrane environment and consider the dynamical nature of the
chromophore-protein system by performing extensive quantum in classical molecu-
lar dynamics simulations at room temperature. The availability of these trajectories
allow us to compute the excitation energies over a large set of representative snap-
shots of the system instead of using models which are either rather close or even
equal to a crystallographic structure from the Protein Data Bank as often done in
previous studies of Rhodopsin. One of the main conclusions from our investigation
is that the use of a classical description of the protein environment as in common
quantum mechanical in molecular mechanics calculations is not adequate for retinal
and leads to too high excitation energies. If the quantum region is enlarged to include
a substantial number of amino acids in the surroundings of the chromophore, the
protein environment responds to the excitation of the retinal chromophore, and the
corresponding excitation red-shifts in the direction of the experimental absorption
maximum of Rhodopsin. Naturally, a larger quantum region of 250 atoms is compu-
tationally very costly when we employ density-functional-based approaches, and is
prohibitive for the highly-correlated excited-state methods we consider reliable for
retinal. Therefore, we cannot directly estimate the shift we would obtain with an en-
larged quantum region using these more accurate approaches, and whether it would
be sufficient to bring their excitations in agreement with the absorption maximum in
Rhodopsin. But then, should we obtain a perfect agreement with the experimental
absorption maximum? A comparison of the vertical excitation with the experimental
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absorption maximum is what is commonly done by theoreticians for most systems,
and so often a perfect agreement has in fact been claimed for Rhodopsin. However,
should the Franck-Condon principle apply for the photo-active retinal system?
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b) 
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Figure 1.8: The experimental absorption spectra for Rhodopsin obtained at a) room
temperature (T = 293 K), and b) low temperature (T = 10 K). Figures adapted from
Ref. 41.

Let us summarize what we have done in our theoretical study on the Rhodopsin
absorption. With considerable effort, we have constructed a realistic structural model
and included temperature effects. We have computed accurate excitation energies
with a quantum in classical description to discover that the response of the pro-
tein must be accounted for beyond a simple classical representation of the environ-
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ment. If we were able to perform highly-correlated calculations with large quan-
tum regions, we can infer that we would still be blue-shifted with respect to the
absorption maximum of Rhodopsin by 0.1–0.2 eV. Is this finding reasonable? In
Figures 1.8, we show the experimental absorption spectra for Rhodopsin obtained
at room and low (10 K) temperature. Both absorption spectra are unstructured and
very broad, and lowering the temperature has practically no effect. Therefore, the
Franck-Condon envelope might be quite complicated and the vibronic effects large,
especially since the chromophore undergoes ultra-fast isomerization upon photo-
excitation. A disagreement of 0.1–0.2 eV between the theoretical vertical excitation
and the location of the absorption maximum can therefore be expected. With cer-
tainty, we can say that it is important to construct a realistic structural model of the
photo-biological system and that more accurate (but more costly) schemes than a
classical, non-polarizable treatment of the protein must be employed to deal with
the chromophore-protein interaction in the computation of the excitation energies.
As for the common habit of comparing the theoretical vertical excitation energy
with the experimental absorption maximum, it does not not seem to be valid for
Rhodopsin.

Here is where the story regarding the absorption of the retinal chromophore and
Rhodopsin ends. Both in the gas phase and in the protein environment, we have care-
fully calibrated our theoretical tools and believe that the procedure we employ gives
an accurate description of the vertical excitation energies of the system. Ultimately,
the definite verdict on our theoretical procedure must come from a comparison with
experiments. However, as it emerges from this thesis, such a comparison is not
always clear-cut. For the retinal chromophore in the gas phase, our findings raise
severe doubts on the available photo-dissociation spectroscopy experiments being
representative of the optical absorption of retinal. For Rhodopsin, it appears that
we (and others) should not compare theoretical vertical excitation energies with the
experimental absorption maximum, given the rather large spectral broadening ob-
served in experiments.

In Chapter 3, we also explore another important aspect of the visual process,
namely, how the structural relaxation in the excited state proceeds upon photo-
excitation. This theme is also ultimately related to our ability to compute a the-
oretical absorption spectrum for retinal and Rhodopsin, and move beyond vertical
excitation energies, which are not what is measured in experiments anyhow. To
compute a spectrum, we need to be able to relax the system in the excited state and
therefore posses sufficiently accurate and efficient excited-state gradients. Here, we
have taken the first steps in the investigation of this issue for simple retinal mod-
els in the gas phase. In the gas phase, solution, and protein, the widely accepted
photoisomerization mechanism from the 11-cis to the all-trans retinal conformer is
one of bond inversion followed by torsion around formal double bonds. For retinal
in the gas phase, we predict instead a very different picture with the use of highly-
correlated approaches also in the computation of the excited-state interatomic forces.
We find that the photo-excited chromophore is very flexible and essentially all bonds
are active, with some torsions leading to photoisomerization and others along non-
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reactive paths. Our findings are compatible with solution experiments which indi-
cate the existence of multiple minima and relaxation pathways, some of which are
non-reactive and do not lead to photoproducts via conical intersection. It would
have surely been interesting to attempt to investigate the photoisomerization process
in the protein. However, determining the necessary ingredients for an accurate de-
scription of Rhodopsin absorption alone was already a tour de force, so the even
more demanding task of relaxing the system in the excited state will be left to my
(brave!) successor.

Finally, in Chapter 7, we digress from retinal and consider a different class of
photosensitive molecules, the so-called cyanine dyes. This class of molecules has
always been considered an intriguing and problematic case for excited-state density
functional theory and a challenge for the development of new density functionals.
We demonstrate that this belief is wrongly based on the use of flawed benchmark
excitation energies, and offer carefully computed values as aid for future develop-
ments.

1.6 Prospects

One of the important conclusions of our Rhodopsin investigation is that the com-
monly used classical description of the protein environment does not yield suffi-
ciently accurate excitation energies of the chromophore-protein system. The use of
a larger quantum cluster would allow us to obtain more accurate excitations but the
number of atoms we need to include in the quantum region becomes too large for
the use of highly-correlated approaches. Therefore, it would be desirable to employ
an improved description of the protein environment without loosing the multiscale
partition of the system in an active region, to be treated at a higher computational
level, and the rest of the protein.

We have preliminarily explored an interesting option, which we describe briefly
here and which will require further investigation, namely, the use of subsystem den-
sity functional theory [52–54] to describe the protein environment. The idea is to
construct a realistic representation of the environment with the use of density func-
tional theory. In this approach, one obtains an effective potential of the protein,
which depends on its ground-state electronic density and can then be combined with
highly-correlated approaches for the computation of the excitation energies of the
photo-sensitive quantum region. The quantum in classical description is therefore
replaced by a quantum in quantum multiscale scheme. This approach will give a
more accurate description of the protein pocket as we are now using a realistic elec-
tronic density instead of fixed, classical point charges to represent the amino acids
surrounding the chromophore.

To generate this effective potential acting on the retinal chromophore, we must
obtain the electronic density of the complete system and this is achieved by parti-
tioning Rhodopsin into distinct regions as shown in Figure 1.9. Within subsystem
density functional theory, we then converge the density of the each region in the
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Figure 1.9: The partition of Rhodopsin into distinct regions is represented by differ-
ent colors, and is used in the subsystem density functional theory calculations for a
quantum in quantum multiscale treatment.

presence of the rest of the system, so each subsystem is polarized by the others.
To explore the performance of this quantum in quantum scheme for Rhodopsin, we
consider a configuration of the protein that gives a very high excitation energy when
computed with the standard quantum in classical approach. Rather surprisingly,
even though this effective environment surely represents a considerable improve-
ment with respect to a classical description, we obtain exactly the same excitation
energy as before.

We know however that increasing the size of the quantum region leads to a red
shift of the excitation energy. Therefore, there are two other possible factors we
need to account for: i) We need to allow the the protein environment to respond
to the excitation of the chromophore; ii) the excitation is characterized by charged
transfer between the chromophore and other amino acids, and it is not possible to
partition the system in chromophore and the rest, so an enlarged quantum region is
the only possible solution. Our calculations of Chapter 6 on large quantum clusters
with excited-state density functional theory seem to rule out the second possibility
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for Rhodopsin since the excitation does not lead to charge transfer. Therefore, we
can still describe our system as partitioned in an active region and the rest of the
protein, and proceed with including “back-polarization” effects of the protein due to
the photo-excitation of the chromophore.

Following this idea, we have generated an effective potential acting on the active
chromophore, where the density of the rest of the protein is still relaxed in the ground
state but in the presence of an excited chromophore. However, a straightforward use
of such a “back-polarized” potential for the computation of the excited state of the
chromophore presents several conceptual problems. We have recently addressed
these difficulties through a proper formulation of a quantum in quantum scheme
where different effective potentials are employed to compute the ground and the
excited state of the active region [55]. The performance of the approach on the
excitation energies of a small benchmark system (i.e. p-nitroaniline in water) is very
promising since the scheme generally leads to excitation energies closer to the super-
molecular values obtained for the whole system. The scheme will be applied to
Rhodopsin in the near future, with the expectation that it will allow us to obtain
accurate excitation energies with the use of relatively small quantum regions.
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[45] J. S. Frähmcke, M. Wanko, and M. Elstner, J. Phys. Chem. B 116, 3313 (2012).

[46] I. B. Nielsen, L. Lammich, and L. H. Andersen, Phys. Rev. Lett. 96, 018304
(2006).

[47] J. Rajput, D. Rahbek, L. Andersen, A. Hirshfeld, M. Sheves, P. Altoè, G. Or-
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Chapter 2

Theoretical Methods

2.1 Introduction
To investigate the photophysics of retinal in the gas phase as well as in the pro-
tein environment of Rhodopsin, we will employ a variety of computational methods
since the problem is characterized by different spacial and temporal scales and can-
not be addressed with the use of a single theoretical approach. The assessment of the
performance/reliability of the excited-state approaches has been a critical aspect of
our investigation as our findings clash against the results of a decade of main-stream
calculations on retinal systems. The extent of this effort is reflected in the partic-
ularly large number of theoretical methods employed for the quantum mechanical
description of the photo-excitations in retinal.

In this chapter, we give a short description of the various methods, which range
from classical molecular dynamics to highly-correlated many-body techniques, and
begin below with the latter. We describe in particular the multi-configuration self-
consistent (MCSCF) approach and its perturbation corrections for the computation
of excited states, the continuous quantum Monte Carlo methods, and time-dependent
density functional theory (TDDFT). We then outline how to combine these quan-
tum mechanical methods with classical molecular mechanics (QM/MM) to treat the
chromophore embedded in a larger classical system.

2.2 Quantum Mechanical Calculations
We work here in the Born-Oppenheimer approximation [1,2], and neglect relativistic
effects so that our non-relativistic system of N interacting electrons is described by
the Hamiltonian:

H = −1

2

N�

i=1

∇2

i +
N�

i=1

vext(ri) +
N�

i<j

1

|ri − rj|
, (2.1)

where we used atomic units (� = m = e = 1). The external potential is either
the bare electron-ion Coulomb potential −Z/r where Z is the charge of the ion,
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2 Theoretical Methods

or a pseudopotential describing the ion plus the core electrons which have been
eliminated from the calculation. We denote with x = (r, σ) the 3 spacial and 1 spin
coordinates of one electron where σ = ±1.

2.2.1 Traditional Quantum Chemistry Methods
The simplest approach for the description of a system of N interacting electrons and
the starting point for the construction of more complex many-body wave functions
is the the Hartree-Fock (HF) method [1, 2]. In this approach, one describes the
interacting system with the optimal non-interacting wave function, namely, a Slater
determinant of single-particle spin-orbitals {Φi}

ΨHF(x1, . . . ,xN) =
1√
N !

���������

Φ1(x1) Φ1(x2) · · · Φ1(xN)
Φ2(x1) Φ2(x2) · · · Φ2(xN)

...
...

...
...

ΦN(x1) ΦN(x2) · · · Φ2(xN)

���������

,

where the single-particle orbitals are determined by minimizing the expectation
value of the interacting Hamiltonian on this wave function. By expressing the spin-
orbitals as the product of a spacial and a spin components, Φi(x) = φi(r)χsi(σ)
and minimizing the energy subject to orthonormality constraint, one obtains that the
spacial orbitals must satisfy the self-consistent HF equations:

�
−1

2
∇2 + vext(r) +

N�

j=1

�
dr�

|φj(r�)|2
|r− r�|

�
φi(r)

−
N�

j=1

δsi,sj

�
dr�

φ∗
j(r

�)φi(r�)

|r− r�| φj(r) = �iφi(r) . (2.2)

The non-local HF exchange potential cancels the interaction of the electron with
itself, that is the self-interaction contribution from the the Hartree potential, and
keeps the electrons of the same spin apart.

For molecular systems, the orbitals are expanded as a linear combination of
atomic orbitals (LCAO) centered on the nuclear positions:

φi(r) =
nuclei�

µ

�

j

aµji ηjµ(r− rµ) , (2.3)

where rµ denotes the position of a nucleus, and the minimization is performed with
respect to the LCAO coefficients, aµji. In most quantum chemistry codes, a Gaussian
atomic basis is used:

η(r) = xmynzk exp (−αr2) , (2.4)

as this choice allows all integrals to be computed analytically.
The difference between the exact energy E and the HF energy is called the cor-

relation energy, Ecorr = E − EHF.
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2.2 Quantum Mechanical Calculations

Post Hartree-Fock Methods

Traditional post-HF approaches rely implicitly or explicitly in expressing the many-
body wave function, Ψ(x1, . . . ,xN), as an expansion in the non-interacting basis of
determinants of single-particle orbitals [1, 2]. The matrix elements of the Hamil-
tonian and the overlap of these N -electron basis functions can then be computed
analytically if the single-particle orbitals are expressed on an atomic Gaussian basis
set.

In the configuration interaction (CI) approach, one constructs the correlated wave
function by considering excitations out of the reference HF determinant to the set of
virtual orbitals as

ΨCI = c0DHF +
�

ab

ca→bD
a→b +

�

abcd

cab→cdD
ab→cd + . . . , (2.5)

where Da→b denotes a single excitation where the occupied orbital a in the HF deter-
minant is substituted with the virtual orbital b. Similarly, Dab→cd indicates a double
excitation from a and b to the virtual orbitals c and d. If we include up to N -body
excitations to all virtual orbitals, we obtain the full CI expansion, which must then
be extrapolated to infinite basis limit by considering a sequence of larger basis sets.
If we denote with Ci a spin- and space-adapted configuration state functions (CSF)
(i.e. a fixed linear combination of determinants with proper spin and space symme-
try), we can rewrite a CI expansion as

ΨCI =
K�

i=1

ciCi , (2.6)

and, by applying the variational principle, obtain the secular equations for the coef-
ficients ci:

K�

j=1

�Ci|H|Cj�c(k)j = E(k)
CI

K�

j=1

�Ci|Cj�c(k)j , (2.7)

where �Ci|Cj� = δij as the orbitals are orthonormal.
For a CI expansion (and any linear expansion on a basis set), one obtains not

only an approximation to the ground state wave function but also to the excited states
thanks to a generalized variational principle, known as the the McDonald’s theorem,
which states that the approximate solutions with energies E(0)

CI
≤ E(1)

CI
≤ . . . ≤ E(K)

CI

satisfy
Ei ≤ E(i)

CI
, (2.8)

where Ei are the exact energies of the eigenstates of the Hamiltonian H. A CI
wave function is however a slowly converging expansion and a large number of
determinants must be included due to the lack of explicit dependence from the inter-
electron coordinates, and the consequent poor description of the cusp occurring at
the electron-electron coalescence points. Moreover, the number of determinants
grows exponentially with the number of electrons N and, while limiting the number
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2 Theoretical Methods

of determinants to the most important excitations lowers the computational cost (for
instance, CISD includes single and doubles and scales as N6), it results in the loss
of size consistency.

In the multi-configuration self consistent field (MCSCF) approach, one mini-
mizes the energy not only with respect to the linear coefficients ci but also the LCAO
coefficients aji. The complete active space self-consistent (CASSCF) approach is a
particular type of MCSCF calculation, where n electrons are distributed over a set of
m active orbitals, whose occupancy is allowed to vary. The resulting CASSCF(n,m)
calculation is like a full CI calculation for n electrons in m orbitals, except that also
the orbitals are now optimized to minimize the total energy.

When several states of the same symmetry are requested, it is customary to use
the state averaged (SA) CASSCF approach to avoid root-flipping problems in the
optimization. In a SA calculations, the weighted average of the energies of the states
of interest is optimized

ESA =
�

I

wI
�ΨI |H|ΨI�
�ΨI |ΨI�

, (2.9)

where
�

I wI = 1 and the states are kept orthogonal. The optimization yields one
common set of orbitals and the different states differ in their CI coefficients. Or-
thogonality is ensured via the CI coefficients and a generalized variational theorem
applies. The most important step for a MCSCF/CASSCF calculation is the selec-
tion of the active space, which requires a fair amount of knowledge of the system
under study and is rather time-consuming since a great number of trial calculations
is often necessary. However, we note that a MCSCF/CASSCF calculations recover
only a small part of the correlation energy as it only provides a description of the
non-dynamical correlation.

One way to improve up on a MCSCF calculation is to use Rayleigh-Schrödinger
perturbation theory, where the total Hamiltonian is partitioned into a zero-order
Hamiltonian, H(0), and a perturbing operator V

H = H(0) + V . (2.10)

The definition of the perturbation theory is complete once we have decided on the
zero-order wave function and Hamiltonian. If we take the zero-order wave function
to be the HF wave function, we would obtain Möller-Plessant perturbation theory
(MP2). Taking a MCSCF wave function to be the zero-order wave function, we
obtain multi-reference perturbation theory (MRPT). Specifically, in the case of a
CASSCF wave function, this has resulted in complete active space perturbation the-
ory (CASPT2) [3], which is one of the most widely used method in excited-state
quantum chemistry However, for MRPT there is not an unique definition of the
zero-order Hamiltonian and this has resulted in multiple formulations of CASPT2,
which differ in the choice of the zero-order Hamiltonian. More recent MRPT that
is also based on a CASSCF zero-order wave function is the so-called n-electron va-
lence state perturbation theory (NEVPT2) [4], which as compared to CASPT2 is
based on a more advanced zero-order Hamiltonians. The important difference is
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2.2 Quantum Mechanical Calculations

that zero-order Hamiltonian in NEVPT2 explicitly includes two-electron terms for
the active electrons, while the CASPT2 zero-order Hamiltonian only includes one-
electron terms. In Chapter 4 of this thesis, we explore how the different choices of
the zero-order Hamiltonian in CASPT2 affect the excitation energies of retinal and,
furthermore, how NEVPT2 compares to CASPT2.

2.2.2 Density Functional Theory
Density functional theory (DFT) [5] represents a very appealing alternative to tra-
ditional quantum chemistry approaches because of its simplicity and computational
efficiency. In DFT, one abandons a wave function description of the system of in-
teracting electrons, and the ground-state energy is expressed as a functional of the
ground-state electronic density [6]. In the Kohn-Sham formulation of density func-
tional theory [7], the ground state density is then written in terms of single-particle
orbitals obeying the equations:

�
−1

2
∇2 + veff ([n] ; r)

�
φi = �iφi, (2.11)

where the electronic density is constructed by summing over the N lowest energy
orbitals where N is the number of electrons:

n(r) =
N�

i=1

|φi(r)|2 . (2.12)

The effective Kohn-Sham potential is given by

veff ([n] ; r) = vext(r) +

�
n(r�)

|r− r�|dr
� + vxc ([n] ; r) (2.13)

vext(r) is the external potential. The exchange-correlation potential vxc ([n] ; r) is
the functional derivative of the exchange-correlation energy Exc [n] that enters in the
expression for the total energy:

E = −1

2

N�

i=1

�
φi∇2φi dr+

�
n (r) vext (r) dr

+
1

2

� �
n(r)n(r�)

|r− r�| dr dr� + Exc [n] . (2.14)

Even though DFT is in principle exact, the exchange-correlation energy is an un-
known functional of the density and must be approximated.

Approximate Exchange-Correlation Functionals

Several approximate exchange-correlation functionals have been proposed in the
literature [8], and recent years have in fact seen a proliferation of novel functionals,
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sometimes designed for the study of specific properties. In this thesis, we employ
generalized gradient approximation (GGA), hybrid, meta-hybrid, and long-range
corrected (LC) functionals.

A “classical” functional form is the generalized gradient approximation (GGA),
whose generic expression (here restricted to second-order derivatives) is given by

EGGA

xc
[n] =

�
n(r) �GGA

xc
(n(r), |∇n(r)| ,∇2n(r)) dr. (2.15)

We will use in particular the Becke-Lee-Yang-Parr (BLYP) [9, 10] and the Perdew-
Burke-Ehrennshof (PBE) [11] GGA functionals in the ground-state ab initio molec-
ular dynamics simulations with the CPMD and CP2K codes. The GGA functional
form is in fact a preferable choice for use in such plane-wave codes since more
advanced functionals including exact exchange are too costly in a plane-wave for-
malism.

Hybrid functionals introduce a dependence on the Kohn-Sham orbitals by mix-
ing in the functional a portion of exact exchange from Hartree-Fock theory:

EHF

x
[n] = −1

2

N�

i=1

N�

j=1

δsi,sj

� �
φ∗
i (r)φ

∗
j(r

�)φj(r)φi(r�)

|r− r�| dr dr� . (2.16)

A widely used hybrid functional is the three parameter B3LYP functional [12, 13]
which combines LDA and the BLYP GGA with exact exchange. We employ the
B3LYP functional in the ground-state optimization of retinal models within Gaus-
sian.

Meta-GGA functional introduce dependence on the non-inteacting kinetic den-
sity

τ =
1

2

�

i

|∇φi(r)|2, (2.17)

Like a normal GGA, a meta-GGA can be combined with the inclusion of exact ex-
change, resulting in a meta-hybrid functional. A popular choice among these func-
tionals is the M06 [14–17] family, a set of four functionals, each of which designed
for a different purpose, that differ mainly in the amount of exact exchange included;
M06-L (0%), M06 (27%), M06-2X (54%), M06-HF (100%). We employ these func-
tionals in the ground-state optimization of retinal models within Gaussian, and in the
subsystem-DFT calculations with ADF.

Finally, we consider the long-range corrected functionals (a good overview of
them can be found in Ref. 18), where we split the electron-electron interaction into
a short- and a long-range component

1

r
=

1− g(r)

r
+

g(r)

r
, (2.18)

where, for instance, g(r) = erf(µr). The short-range component is treated through
a density functional approximation while the long-range component is considered
as exact exchange, resulting in

Exc [n] = EGGA,SR
x

[n] + EHF,LR
x

[n] + EGGA

c
[n] (2.19)
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2.2 Quantum Mechanical Calculations

The usage of the error function allows the exact exchange part to be obtained an-
alytically while for the GGA density functional part an approximation based on a
LDA ansatz is normally used [8,19]. As given above the long-range corrected func-
tionals include 0% exact exchange at short range and 100% exact exchange at long
range. However, the formulation can been generalized to include a certain amount
of exact exchange at short range, for example by using g(r) = α + βerf(µr) as
done in the so-called CAM (Coulomb-attenuating method) functionals [20]. In par-
ticular, the popular CAM-B3LYP functional [20] includes 19% exact exchange at
short range, although differently from most other long-range corrected functionals
it only includes 65% exact exchange at long range. It has been observed that the
long-range corrected functional can cure the well-known shortcoming of other func-
tional forms to handle charge-transfer excitation within TDDFT. Here, we employ
the CAM-B3LYP functional [20] and the LC-ωPBE [21, 22] functional in the study
of the excited states of retinal.

Time-Dependent Density Functional Theory

Time-dependent density-functional theory (TDDFT) [23] represents a rigorous for-
malism to compute excitation energies. As in the case of ground-state DFT, while
exact in principle, TDDFT relies in practice on the use of approximate exchange-
correlation functionals.

The time-dependent equivalent of the Hohenberg-Kohn theorem is the Runge-
Gross theorem [24]. It proves the one-to-one correspondence between the external
time-dependent potential vext(r,t) and the time-dependent electronic density, n(r,t)
and leads to the construction of a time-dependent Kohn-Sham scheme. The interat-
ing problem is then exactly mapped to a system of non-interacting electrons in an
effective external time-dependent potential:

�
−1

2
∇2 + veff ([n] ; r, t)

�
φi(r, t) = i

∂

∂t
φi(r, t), (2.20)

which yields the exact electronic density constructed from the Kohn-Sham orbitals
as

n(r, t) =
N�

i=1

|φi(r, t)|2 . (2.21)

The Kohn-Sham effective potential is given by

veff ([n] ; r, t) = vext(r, t) +

�
n(r�, t)

|r− r�|dr
� + vxc ([n] ; r, t) , (2.22)

Here, it is important to note that the time-dependent exchange-correlation potential
is not the same functional of the density as the ground-state exchange-correlation po-
tential (Eq. 2.13). Instead, it is the functional derivative of the exchange-correlation
component of the action functional [24, 25].
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Some approximations are needed as the time-dependent exchange-correlation
potential is unknown. The simplest approximation is to assume that the exchange-
correlation potential is local in time, that is, reacts instantaneously and without mem-
ory to any temporal change of the density. This is known as the adiabatic approxi-
mation:

vadiab
xc

([n]; r, t) = vgs
xc
([n]; r)|n=n(r,t) (2.23)

where vgs
xc

is a particular chosen ground-state exchange-correlation potential. Here,
vgs
xc

is a property of the ground-state, so this approximation should works best for
time-dependent systems where the density does not deviated too far from the ground-
state density.

If we know how the system responds to a small time-dependent perturbation,
then the excitation energies can be easily obtained from a TDDFT calculation. To
achieve this, the key quantity is the linear density response function χ that gives the
change in the density if the system is subjected to a small perturbation in the external
potential:

δnσ(r,ω) =

�
dr�χ(r, r�,ω) δvext(r

�,ω). (2.24)

Using the linear density response function, we can compute the dynamic polarizabil-
ity and consequently obtain the photoabsorption cross section. We can rewrite this
change in the density by using the time-dependent Kohn-Sham scheme (Eqs. 2.20–
2.22), resulting in

δnσ(r,ω) =

�
dr�χKS(r, r

�,ω) δveff(r
�,ω). (2.25)

Here, χKS is the density response function for the non-interacting Kohn-Sham elec-
tron system, which we can write in the terms of the unperturbed time-independent
Kohn-Sham orbitals. We can obtain the linear change in the potential if we make
use of the definition of the exchange-correlation potential (Eq. 2.21)

δveff(r,ω) = δvext(r,ω) +

�
dr�

�
1

|r− r�| + fxc(r, r
�,ω)

�
δn(r�,ω). (2.26)

Here, fxc([n]; r, r�,ω) is the Fourier transform of the exchange-correlation kernel:

fxc([n]; r, r
�, t− t�) =

δvxc([n]; r, t)

δn(r�, t�)
. (2.27)

By combining Eqs. 2.24–2.26, we can derive a Dyson-like equation for the response
function

χ(r, r�,ω) = χKS(r, r
�,ω) (2.28)

+

�
dx

�
dx� χ(r,x,ω)

�
1

|x− x�| + fxc(x,x
�,ω)

�
χKS(x

�, r�,ω).

30



2.2 Quantum Mechanical Calculations

The response χ of the interacting system can be obtained via a self-consistent solu-
tion if the exact exchange-correlation kernel is known. However, achieving a com-
plete numerical solution of this equation is rather difficult. Instead, we make use of
the knowledge that the excitation energies of the interacting system correspond to
the poles of the density response function χ. In the same manner, the Kohn-Sham
response function χKS has poles that coincide with the non-interacting excitation
energies, which are given by the difference of Kohn-Sham eigenvalues.

By employing a sequence of algebraic manipulations, linear-response TDDFT
can be expressed in the form of so-called Casida’s equations [26], which is form used
in most quantum chemistry codes. There, the poles of the the response functions,
Ω = Em − E0, are obtained as solutions of a non-Hermitian eigenvalue problem:

�
A B
B A

��
�X
�Y

�
= Ω

�
−1 0
0 1

��
�X
�Y

�
, (2.29)

where the matrices A and B are defined as

Aia,i�a� = δii�δaa�(�a − �i) +Kia,i�a� ,

Bia,i�a� = Kia,a�i� = (ia| 1

|r− r�| |a
�i�) + (ia|fxc|a�i�) . (2.30)

The excitation energies are given by the eigenvalues, while the oscillator strengths
can be computed from the eigenvectors.

TDDFT is a very appealing method for obtaining the excited-state properties of
large molecular systems as it has a rather favorable scaling of approximately O(N3)
and is often fairly accurate. Nevertheless, it is important to note that linear-response
TDDFT does have some limits [23], which one has to be aware of. For example,
it only contains dressed one-electron excitations, which is a problem if the system
under study displays multi-configurational character. Another well-known problem
is the underestimation of charge transfer excitations [27–29]. However, the range-
separated functionals seem to provide an elegant solution to this problem.

2.2.3 Quantum Monte Carlo Methods

We present here the variational (VMC) and diffusion (DMC) Monte Carlo methods,
which are the most commonly used continuous quantum Monte Carlo (QMC) [30]
techniques. These methods are wave function based but differ from conventional
quantum chemistry as they attempt to solve the Schrödinger equation stochastically.
Since the integrals are computed stochastically (and not analytically as in other quan-
tum chemical methods), they offer significantly more freedom in the choice of the
functional form of the many-body wave function. Moreover, both approaches scale
rather favorably with the number of electrons, namely, N4 as compared for instance
to N7 of the coupled cluster single and double with perturbative triples method.
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Variational Monte Carlo

The variational Monte Carlo method is the simplest flavor of QMC and uses Monte
Carlo techniques to evaluate the expectation value of an operator on a given wave
function. For instance, let us assume that we are interested in computing the expec-
tation value of the Hamiltonian H on a given trial wave function ΨT:

EV =

�
Ψ∗

T
(R)HΨT(R)dR�

Ψ∗

T
(R)ΨT(R)dR

, (2.31)

where we denote with R the 3N electron coordinates. This expectation value can be
rewritten as

EV =

�
|ΨT(R)|2[ΨT(R)−1HΨT(R)]dR�

|ΨT(R)|2dR =

�
ρ(R)EL(R)dR , (2.32)

where
ρ(R) =

|ΨT(R)|2�
|ΨT(R)|2dR , (2.33)

and the local energy is defined as

EL(R) = ΨT(R)−1HΨT(R) , (2.34)

Since ρ(R) is a positive quantity and integrates to 1, we can interpret it as a proba-
bility distribution and use classical Monte Carlo techniques to sample a set of con-
figurations {Rm} distributed according to ρ(R). The expectation value can then be
estimated as an average of the local energy EL(R) evaluated on these configurations:

EV ≈ 1

M

M�

m=1

EL(Rm) (2.35)

Note that in this derivation, we can substitute the Hamiltonian H with any operator
O diagonal in space representation.

For a realistic molecular system, the square of the many-body wave function is a
complicated probability distribution in a high-dimensional space, whose normaliza-
tion is usually not easy to compute. Therefore, we cannot use direct sampling tech-
niques but we employ the classical Metropolis algorithm [31] to generate a sequence
of configurations {Rm} distributed according to ρ(R). The Metropolis algorithm is
a general method to sample an arbitrary probability distribution without knowing its
normalization. Here, we employ the VMC algorithm as described in Ref. 32, which
uses a non-symmetrical transition matrix in the Metropolis algorithm, and which we
properly modified to deal with pseudopotentials.

Many-Body Wave Functions Used in Quantum Monte Carlo

To understand the functional form of the wave function most commonly used in
quantum Monte Carlo, let us recall that methods such as configuration interaction
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(CI) expand the wave function in a linear combination of Slater determinants of
single-particle orbitals and are therefore plagued by a slow convergence, in part be-
cause of the difficulty in describing the cusps at the electron-electron coalescence
points. When the electrons approach each other, the potential energy diverges at
infinity, so the kinetic energy must have an opposite divergence to the potential to
keep the local energy finite. This cancellation can be enforced if the trial wave func-
tion satisfies the so-called “cusp conditions” and displays a proper discontinuity of
the derivatives at the coalescence points. By introducing an explicit dependence on
the interelectronic distance, quantum Monte Carlo can exactly impose such condi-
tions and, consequently, employ a much more compact representation of the wave
function, which is usually given by a sum of few determinants (hundreds and not
millions like in a CI calculation) multiplied by a component with the proper cusp
behavior.

The trial wave functions most commonly used in quantum Monte Carlo calcu-
lations are of the so-called Jastrow-Slater form, namely, a product between a sum
of determinants of single-particle orbitals, and a Jastrow correlation factor. In the
spin-assigned form, a Jastrow-Slater wave function can be written as:

Ψ(r1, . . . , rN) = J (r1, . . . , rN)
�

k

dkD
↑

k(r1, . . . , rN↑)D
↓

k(rN↑+1, . . . , rN) ,

(2.36)
where D↑

k and D↓

k are Slater determinants of single particle orbitals for the up and
down spin electrons, respectively. The orbitals are a linear combination of Gaus-
sian basis functions when pseudopotentials are employed. The Jastrow factor is a
positive function of the interparticle distances and is of particular important for the
description of electronic correlation at short and intermediate interelectron distances.
In particular, the electron-electron cusp conditions are imposed through the Jastrow
factor.

The form of the Jastrow factor we use depends on electron-electron and the
electron-nucleus distances and accounts for electron-electron, electron-nucleus and
electron-electron-nucleus correlations:

J (r1, . . . , rN) =
�

α,i

exp
�
A(riα)

�
×

�

i<j

exp {B(rij)}×

×
�

α,i<j

exp {C(riα, rjα, rij)} . (2.37)

The electron-nucleus terms A must be included if the single-particle orbitals in the
determinants are taken from a DFT or a HF calculation and not reoptimized in the
presence of the Jastrow factor. This term corrects for the fact the electron-electron
term reduces/increases the single-particle density in high/low density regions, and
leads in general to a worse density than the original DFT or HF density. The
electron-electron term B ensures that the electron-electron cusp conditions are sat-
isfied, and keeps the electrons apart. Finally, the electron-electron-nucleus terms
C can in principle exactly describe a two-electron atom or ion in an S state. Higher
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body correlations are clearly less important since it is rare for three or more electrons
to be close since at least two electrons must necessarily have the same spin.

Since the Jastrow factor should be finite at large distances, we introduce scaled
variables r̄ = (1− e−κr)/κ for the A and B terms, and r̄ = e−κr for the C terms. In
this thesis, we use the following form:

A(riα) =
a1r̄iα

1 + a2r̄iα
+

Na
ord�

p=2

ap+1r̄
p
iα

B(rij) =
b1r̄ij

1 + b2r̄ij
+

Nb
ord�

p=2

bp+1r̄
p
ij

C(riα, rjα, rij) =

Nc
ord�

p=2

k=p−1�

0

l=lmax�

0

cmklr̄
k
ij(r̄

l
iα + r̄ljα)(r̄iαr̄jα)

m, (2.38)

where m = (p− k − l)/2, and lmax is p − k if k �= 0 and p − k − 2 if k = 0.
Only terms for which m = (p− k − l)/2 is an integer are included. The a and c
coefficients are different for different atom types. The only spin dependence is in
b1 which is is used to satisfy the electron-electron cusp conditions: b1 = 1/2 for
antiparallel spin, and b1 = 1/4 for parallel electrons.

The quality of the trial wave function affects the statistical efficiency of the QMC
algorithms as well as the final accuracy of the results. The parameters in the Jastrow
factor should therefore be optimized and it would be preferable if also the parameters
in the determinantal component (CI and LCAO coefficients) were optimized since
the optimal values will be different from the DFT or MCSCF ones, which are instead
optimal in the absence of the Jastrow factor. For the optimization of the parameters
in the trial wave function of a system in its ground state, we use the so-called linear
optimization method within energy minimization [33]. Since we are also interested
in excited states, we want to be able to optimize the parameters of the multiple
(ground and excited) orthogonal states described by the wave functions:

ΨI =
NCSF�

i=1

cIiJCi . (2.39)

which share the same Jastrow factor and orbitals but different linear coefficients.
To this end, we employ a generalization of the linear method to state-average (SA)
optimization [34] to determine a set of orbitals and a Jastrow factor which give a
comparably good description of the states under considerations while preserving
orthogonality among the states.

Diffusion Monte Carlo

While VMC is a very useful to explore which type of correlation is important in
the description of the system of interest, all results will of course depend on the

34
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quality of the input wave function. Moreover, there is not an unique and automatic
way to construct this wave function, whose functional form must be tailored for
each particular study. Projector Monte Carlo is a different flavor of QMC, which
removes (at least in part) the bias of the trial wave function from the results. The
idea of projection Monte Carlo is to use an operator that inverts the spectrum of H
to project out the ground state of H from a given trial state.

Here, we only discuss the particular choice of operator in the diffusion Monte
Carlo (DMC) approach, which we use in our calculations. In DMC, the projection
operator is given by exp[−τ(H−ET)], and is applied to an initial trial wave function
to obtain the sequence of wave functions:

Ψ(n) = e−τ(H−ET)Ψ(n−1) . (2.40)

If we expand the initial wave function Ψ(0) on the eigenstates Ψi with energies Ei of
H, we obtain for Ψ(n):

Ψ(n) =
�

i

Ψi �Ψ(0)|Ψi�e−nτ(Ei−ET) , (2.41)

Since the coefficients of the excited states die off exponentially fast relative to the
one of the ground state, we obtain

lim
n→∞

Ψ(n) = Ψ0�Ψ(0)|Ψ0�e−nτ(E0−ET) . (2.42)

Therefore, if we adjust the trial energy ET ≈ E0 to keep the over all normalization
of Ψ(n) fixed, the projection gives us the ground state Ψ0 of the Hamiltonian.

To understand how to proceed in practice, let us rewrite Eq. 2.40 in integral from
as

Ψ(n)(R�, t+ τ) =

�
dRG(R�,R, τ)Ψ(n−1)(R, t) , (2.43)

where the Green’s function is defined as

G(R�,R, τ) = �R�|e−τ(H−ET)|R� . (2.44)

This integral can be computed stochastically if we can sample the trial wave function
and the Green’s function in Eq. 2.43. Since, for fermions, the wave function is
antisymmetric and cannot be interpret as a probability distribution, we will assume
that, for the moment, we are dealing with bosons and return to this issue later.

For small τ , the Green’s function can be approximated via the Trotter-Suzuki
formula as

�R�|e−Hτ |R� ≈ 1

(2πτ)3N/2
exp

�
−(R� −R)2

2τ

�
exp [−τ V(R)] . (2.45)

Therefore, the iteration in Eq. 2.43 can be interpreted as a a branching random walk:
The first factor in the short-time Green’s function is a diffusion step, while the sec-
ond term multiplies the distribution by a positive scalar. Since the short-time expres-
sion of the Green’s function is only valid in the limit of small τ , the results of DMC
calculations must be extrapolated for τ which goes to zero.
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The use of this Green’s function leads to an unstable algorithm since the potential
can vary significantly in configuration space or even be divergent as, for instance,
the Coulomb potential when two particles approach each other. Even if the potential
is bounded, the approach is inefficient with increasing system size since the potential
is an extensive quantity and the branching factor therefore grows with the number of
particles. It is possible to overcome these difficulties by using the so-called impor-
tance sampling algorithm [35], where we make use of the trial wave function Ψ we
have built within VMC. To do so, we start from Eq. 2.43, multiply each side by Ψ,
and define the probability distribution f (n)(R) = Ψ(R)Ψ(n)(R) which satisfies

f (n)(R�, t+ τ) =

�
dR G̃(R�,R, τ)f (n−1)(R, t) . (2.46)

The importance sampled Green’s function is given by

G̃(R�,R, τ) = Ψ(R�)�R�|e−τ(H−ET)|R�/Ψ(R) . (2.47)

For small τ , the resulting drift-diffusion-branching short-time Green’s function is
given by

G̃(R�,R, τ) = (2πτ)3N/2 exp

�
−(R� −R− τV(R))2

2τ

�
×

× exp {−τ [(EL(R) + EL(R
�))/2− ET]}+O(τ 2) . (2.48)

where the quantum velocity is defined as

V(R) =
∇Ψ(R)

Ψ(R)
. (2.49)

The use of importance sampling yields two improvements: i) The quantum velocity
pushes the walkers to regions where the wave function is large; ii) the local energy
EL(R) instead of the potential V(R) appears in the branching factor. Since the
local energy becomes a constant eigenvalue as the trial wave function approaches
the exact eigenstate, we expect that a good trial wave function will lead to smaller
fluctuations in the branching factor. Moreover, the instabilities for the Coulomb
potential are removed since the wave function satisfies the cusp conditions.

So far, we have not addressed the issue that electrons are fermions and that the
trial wave function must be antisymmetric, and therefore change sign. Algorithms
which attempt to handle both signs of the wave function lead to the fermion sign
problem, namely, that the bosonic component grows at the expenses of the fermionic
one, and the antisymmetric signal is lost in the noise. To avoid this problem, we work
in the so-called fixed-node approximation and solve the evolution equation with the
boundary condition that the solution has the same nodes (the same zeros) as the
given trial wave function. The Schrödinger equation is solved exactly inside the
nodal regions but not at the nodes where the solution will have a discontinuity of
the derivatives. The fixed-node solution is exact only if the nodes of the trial wave
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function are exact and, for approximate nodes, gives an upper bound to the exact
energy.

DMC can also be used to study the excited states of a given Hamiltonian. If the
state is the lowest state of a one-dimensional representation of the point group of the
molecules, DMC will yield a solution which is variational. If the excited state is not
the lowest state in its symmetry, we can use DMC in the fixed-node approximation
and employ the nodes of a trial wave function, constructed to describe the desired
excited state, to keep the solution from collapsing on the ground state. We will
however not have a variational principle and we are only guaranteed that fixed-node
DMC yields the exact solution if the nodes of the trial wave function are exact.
Therefore, we may expect that the role of the trial wave function in DMC is even
more important for excited states than for ground states since it not only imposes
fermionic antisymmetry but also selects the state of interest.

2.3 Quantum Mechanics in Molecular Mechan-
ics Techniques

In this thesis, we investigate the absorption in a complex biological systems com-
prising many thousands of atoms, for which a full quantum mechanical treatment
is clearly impossible. Fortunately, the primary photoabsorption process often in-
volves the chromophore and few surroundings residues, and is therefore spatially
rather localized (the extent of this localization will be the subject of study in Chap-
ter 6). Therefore, it is not unreasonable to attempt to partition the system into a
smaller quantum subsystem and a larger environment to be simulated by less ex-
pensive classical molecular mechanics methods. These hybrid methods are called
quantum mechanics in molecular mechanics (QM/MM) [36] approaches.

The classical MM calculations employ empirical force fields to describe the in-
teractions of the atoms [37]. The chosen force field defines the functional form of
the potential-energy function and the parameters set for the atoms. The functional
form contains bonded terms, for example, bond stretching, bending of angles, and
torsional angles. Furthermore, it contains non-bonded terms, which are van der
Waals terms and the Coulomb interaction terms between the partial point charges of
the atoms. For the interface between the MM and QM parts in the quantum Monte
Carlo calculations, we adopt here the approach by Röthlisberger and coworkers [38]
as implemented in the code CPMD [39]. The non-bonded interactions between the
MM and the QM parts are modelled as

HNB =
�

I∈MM

qI

�
dr

ρ(r)

|r− rI |
+

�

I∈MM,J∈QM

vvdW(rIJ) (2.50)

where ρ(r) is the density of the electrons and the nuclei of the QM system, qI are
the MM partial charges at positions rI , and the classical force field vvdW regulates
the van der Waals interactions between QM and MM atoms.
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If the QM system is close to some positively charged MM atoms, one encounters
so-called spill-out effects of quantum charge towards the MM region, which are
particularly severe when a plane-wave basis is used as in the CPMD code. To avoid
these problems, the point charges in proximity of the QM system are screened so that
the electrostatic interaction of electrons with the close MM atoms in the non-bonded
Hamiltonian is

Hel

NB
=

�

I∈NN

qI

�
dr ρel(r)vI(r− rI) (2.51)

where
vI(r) =

rncI − rn

rn+1

cI − rn+1
(2.52)

with rcI the covalent radius of the atom type I and n=4 [38]. Finally, we mention that
the QM/MM boundary in our system cuts through a chemical bond of a molecule.
In this case, we “cap” the broken bond with a hydrogen atom, which is seen by the
QM system but not by the MM atoms.

2.4 Computational Details
We list here the codes employed in the various calculations. Computational details
specific to each calculation will be given in each chapter.

The Gromacs [40] code is a set of computational tools to perform and analyze
classical molecular dynamics simulations.

The CPMD [39] code is used to perform the QM/MM calculation within DFT
as QM method, while the Gromos [41] classical force field code is used for the MM
part. We employ the QM/MM interface developed by Röthlisberger and cowork-
ers [38, 42]. The CPMD code is a plane-wave/pseudopotential code particularly
designed for ab-initio molecular dynamics.

The Molcas [43] code is a quantum chemistry code, based on Gaussian basis
sets, that we use to perform CASSCF and CASPT2 calculations.

The Gaussian 09 [44] code is a quantum chemistry code we use to perform
ground-state DFT and linear-response TDDFT calculations. It uses Gaussian basis
sets, and a wide range of exchange-correlation functionals is available.

The Amsterdam Density Functional ADF [45] code is a software package for
first-principles electronic structure DFT calculations, using Slater functions for the
construction of the orbitals. We employ this code to perform sub-system DFT cal-
culations.

The GAMESS [46] code is a ab initio quantum chemistry package which we
mostly use to generate the starting QMC wave functions either through a DFT or a
SA-CASSCF calculation. This code employs Gaussian basis sets. The electrostatic
effect of the protein environment can be introduced through the use of screened point
charges described by the potential

v(r) =
q

r

�
1− Ae−Br

�
(2.53)
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where q is the value of the charge, and A and B are free parameters. We choose A =
1 to remove the divergence at the origin, and adjust the value of the B to reproduce
the CPMD potential outside the maximum. We find that the choice B = 1/r2c where
rc is the CPMD core radius gives similar potentials in the valence region.

Among other codes employed are the Dalton [47] code for coupled-cluster cal-
culations and the ORCA [48] code for NEVPT2 calculations. Both these codes
employ gaussian basis set.

Finally, the code CHAMP is used for all the quantum Monte Carlo calculations.
It can perform VMC and DMC calculations, and optimize the wave function param-
eters by energy minimization.
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Chapter 3

Photoisomerization of the Retinal
Chromophore in a New Light†

We present a systematic investigation of the structural relaxation in the excited state
of model retinal chromophores in the gas phase using the complete-active-space self-
consistent-theory (CASSCF), multiconfigurational second-order perturbation theory
(CASPT2), quantum Monte Carlo (QMC), and coupled cluster (CC) methods. In
contrast to the CASSCF photoisomerization mechanism of bond inversion followed
by torsion around formal double bonds, we find that the other approaches predict
an initial skeletal relaxation which does not lead to bond inversion but to a rather
flexible retinal chromophore with longer bonds and with the bond-length pattern of
the ground state being partly preserved. The relaxation proceeds then preferentially
via partial torsion around formal single bonds and does not reach a conical intersec-
tion region. Our findings are compatible with solution experiments which indicate
the existence of multiple minima and relaxation pathways, some of which are non-
reactive, do not lead to photoproducts via conical intersection, and are dominant in
solution. Our results also demonstrate the importance of a balanced description of
dynamical and static correlation in the excited-state gradients and raise serious con-
cerns on the common use of the CASSCF method to investigate structural properties
of photoexcited retinal systems.

3.1 Introduction
The absorption of visible light and its conversion to other forms of energy is at the
heart of some of the most fundamental processes in biology. An important example
of light absorption initiating a biological response is the primary event of vision [1]
where light induces the cis-trans isomerization of the photosensitive 11-cis reti-
nal chromophore in Rhodopsin [2] and other visual pigments, activating a cascade

†This chapter has been published as O. Valsson and C. Filippi, “Photoisomerization of Model
Retinal Chromophores: Insight from Quantum Monte Carlo and Multiconfigurational Perturbation
Theory”, J. Chem. Theory Comput. 2010, 6, 1275–1292
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of chemical reactions which ultimately culminate in the stimulation of the optical
nerve [3]. The initial photoisomerization process is one of the fastest photochemical
reactions in nature occurring within a few hundred femtoseconds [4] and the protein
environment plays a central role in guiding the reaction. In solution, the dynamics of
retinal is in fact quite different than in the protein, namely, about 20 times slower [5]
and much less efficient [6, 7]. Even though femtosecond spectroscopy studies have
extensively investigated the primary isomerization step of retinal [8–14], the detailed
nature of the molecular mechanism in the initial excited-state reaction and the exact
role of the protein environment are still not understood [12].

Theoretically, a large number of calculations with a variety of quantum chemical
methods have been performed to investigate the structural and spectroscopic proper-
ties as well as the nature of the photoisomerization mechanism of retinal and retinal
models in the gas phase [15–41] and in the protein environment [24, 42–61]. Given
the large size of the retinal chromophore, most calculations including the protein
via quantum mechanics/molecular mechanics (QM/MM) approaches have mainly
focused on obtaining a realistic representation of the structural model in the ground
state and understanding the environmental effects on the absorption properties. In-
terestingly, even though all investigations employing different techniques appear to
reproduce the correct experimental absorption value, the reasons behind this agree-
ment are contrasting and there are fundamental differences concerning the structure
of the chromophore, the protonation of nearby residues, and the overall role of the
protein in tuning the spectral properties [46, 52, 53, 57, 60]. If nailing down the ex-
act role of the environment on the Franck-Condon excitation has proven elusive, the
computation of dynamical properties of photoexcited retinal in the gas phase as well
as in the protein is an even harder task since it requires a uniformly reliable com-
putation of excited-state potential energy surfaces and the availability of analytical
energy gradients for geometric optimization and dynamical runs.

To date, most excited-state geometrical investigations have employed the low-
level complete-active-space self-consistent-field (CASSCF) approach for the relax-
ation of retinal in the gas phase [15–18,33,34,38,46] with also few attempts to simu-
late the dynamics of retinal in the protein environment [45,55,61]. The excited-state
energies on the CASSCF structures are often refined in single-point calculations with
higher-level approaches such as multiconfigurational perturbation theory (CASPT2)
to partially account for dynamical correlation largely missing in the CASSCF de-
scription. These studies have led to the generally accepted picture that photoisomer-
ization begins with an in-plane skeletal relaxation which yields bond inversion and
proceeds via a torsional motion around carbon-carbon bonds having double-bond
character in the ground state [16,18,34,38]. The chromophore is then funneled into
a conical intersection region which leads to the ground-state trans photoproduct.
Recent calculations of Send and Sundholm based on coupled cluster (CC) theory
have however challenged this picture as they obtain a rather different excited-state
relaxation mechanism of retinal models in the gas phase [29, 31, 35, 37]. The ini-
tial relaxation in the excited state at the CC level does not yield bond inversion but
the lengthening of most bonds while preserving the general bond-length pattern of
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the ground state. The subsequent torsional motion is around carbon-carbon bonds
holding single-bond character in the ground state. However, these CC calculations
have been dismissed on the basis of being single reference and thus lacking a proper
description of static correlation as compared to the CASSCF approach [36]. This
response reflects the general acceptance of CASSCF as an adequate tool for the in-
vestigation of excited-state structural properties of retinal and other photosensitive
chromophores.

In the present work, we perform a thorough investigation of the initial excited-
state relaxation from the Frank-Condon point of model retinal chromophores in the
gas phase, and employ CASPT2 and quantum Monte Carlo (QMC) in addition to the
CASSCF and CC methods. The CASPT2 approach is well established and is consid-
ered a benchmark method for the computation of excited-state properties but its use
for retinal models has been mostly confined to single-point calculations, in-plane
geometrical relaxation of few models [20], and constraint optimization of a mini-
mal chromophore model [19, 20, 23, 41]. The QMC method is instead less common
in the field of theoretical photochemistry and its use for excited-state geometrical
optimization is novel. QMC has recently given promising results in the study of
various photoactive molecules [62–66] and a favorable comparison with CASPT2
will further establish its use for investigating photochemical problems. At the cost
of being computationally more expensive, CASPT2 and QMC methods can give an
accurate and balanced description of both static and dynamical correlation and there-
fore represent an ideal tool to clarify the nature of the microscopic mechanism in the
photoisomerization of retinal and to resolve the disagreement between the generally
accepted CASSCF picture and the recent, controversial CC results.

We find that our in-plane geometrical relaxations from the Frank-Condon point
of retinal models show a consistent, good agreement among the CASPT2, CC, and
QMC approaches, which give excited-state structures not characterized by bond-
length inversion in striking contrast to the results obtained with the CASSCF ap-
proach. Photoexcitation therefore weakens all bonds, which stretch and become
partly more similar in length while preserving the general bond-length pattern of the
ground state. To investigate a non-trivial minimum energy path out of plane, we
consider a model with four double bonds and find that the excited-state relaxation
at the CASPT2 level proceeds preferentially via a partial torsional motion around
a formal single bond and does not lead to a conical intersection region. To assess
the existence of a reactive path at the CASPT2 level, we also study the constrained
excited-state isomerization around a formal double bond for the same model. We
find that the system encounters a small barrier to isomerization at rather large an-
gles of rotation, beyond which it is funneled towards a conical intersection region
characterized by bond inversion.

Therefore, in agreement with previous CC calculations, our results support the
picture of a rather flexible retinal chromophore in the excited state as compared
to the CASSCF excited chromophore which can only twist around formal double
bonds. These findings are compatible with the observation in solution experiments
of the existence of multiple minima, possibly corresponding to different torsional
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conformations, and multiple excited-state paths. Some of these paths are reactive
and yield a photoproduct via a conical intersection while others are non-reactive, do
not lead to a conical intersection, and are dominant in solution [67]. Finally, our re-
sults demonstrate the importance of including an accurate description of dynamical
correlation also in the excited-state gradients and raise serious concerns about the
common use of CASSCF in investigating excited-state structures of retinal systems.

In Section 3.2, we briefly present the methods used in this paper and focus on
the description of the QMC geometrical optimization. In Section 3.3, we describe
the computational details and, in Section 3.4, we introduce the model retinal chro-
mophores we investigate. In Sections 3.5–3.7, we present the results for the vertical
excitation energy, the in-plane geometrical relaxation, and the minimum energy path
or out-of-plane geometrical relaxation in the excited state. Finally, in Section 3.8,
we discuss our results and conclude.

3.2 Methods
In this work, we employ a wide range of ab initio quantum chemical methods. While
we refer the reader to appropriate textbooks [68] for a discussion of the more tra-
ditional CASSCF, CASPT2, and CC approaches, we briefly review below the less
common QMC methods [69]. In particular, we focus on the procedure we follow
to perform geometrical optimization within variational Monte Carlo (VMC), which
is non-standard, and on how we address stability issues in the calculation of energy
gradients.

3.2.1 QMC Methods
QMC methods provide an accurate and balanced description of dynamical and static
electronic correlation in both molecular and extended systems [69]. Their applica-
tion to the description of the excited-state properties of photoactive molecules has
already given promising results [62–66].

A crucial ingredient which determines the quality of a QMC calculation is the
many-body trial wave function, which is here chosen of the so-called Jastrow-Slater
type. Since we treat multiple states of the same symmetry, we write the ground-
and excited-state wave functions as linear combination of spin-adapted configuration
state functions (CSF) multiplied with a Jastrow correlation factor,

ψI = J
NCSF�

i=1

cIiCi , (3.1)

where different states depend on their individual linear coefficients, cIi , but share a
common set of single-particle orbitals and Jastrow factor, J . We use here a Jastrow
factor which correlates pairs of electrons and each electron separately with a nucleus,
and employ different Jastrow factors to describe the correlation with different atom
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types. Since the optimal orbitals and expansion coefficients in ψI may differ from the
values obtained for instance in a CASSCF calculation in the absence of the Jastrow
factor, it is important to reoptimize them in the presence of the Jastrow factor.

The parameters of the trial wave functions are optimized in an efficient and sim-
ple approach in a state-average (SA) fashion as described in Ref. 66. In this scheme,
we iteratively alternate between optimizing the linear coefficients in the CSF expan-
sion and the non-linear (Jastrow and orbital) coefficients where the quantity mini-
mized is the weighted averaged energy over the states under consideration:

ESA =
�

I

wI
�ΨI |H|ΨI�
�ΨI |ΨI�

, (3.2)

where the weights are fixed and
�

I wI = 1. At convergence, the averaged energy
ESA is stationary with respect to all parameter variations subject to the orthogonality
constraint while the energies of the states are stationary with respect to variations of
the linear coefficients but not of the orbital or Jastrow parameters. In this approach,
the wave functions are kept orthogonal and a generalized variational theorem ap-
plies.

The set of optimal linear coefficients is obtained by solving a generalized eigen-
value problem where the Hamiltonian and the overlap matrix on the basis functions
JCi are estimated within VMC by sampling a guiding function Ψg chosen to have
significant overlap with all states of interest. The use of a non-symmetric estima-
tor of the Hamiltonian matrix yields a strong zero-variance principle and renders
the approach particularly efficient [70]. To optimize the non-linear parameters, we
employ the linear optimization method first developed for ground states [71] and
recently extended to the state-average optimization of multiple states [66]. In this
scheme, the non-linear minimization problem is linearized by working in the basis
of the derivatives of the wave function with respect to the non-linear parameters. In
the case of multiple states, the elements of the weighted averaged Hamiltonian and
overlap matrices are computed in a single VMC run by sampling a guiding wave
function Ψg. Both when determining the linear and the non-linear parameters, the
guiding wave function is here chosen equal to

��
I |ΨI |2.

The optimal trial wave functions are then used in diffusion Monte Carlo (DMC),
which gives the best energy within the fixed-node approximation, that is, the lowest-
energy state with the same zeros (nodes) as the trial wave function.

3.2.2 VMC Geometrical Optimization
The VMC geometrical optimization is performed in Z-matrix coordinates where the
energy gradients with respect to the nuclear coordinates are obtained using numeri-
cal differentiation and correlated sampling [72].

To determine the interatomic forces at a given reference geometry, we construct
a set of secondary geometries corresponding to small forward and backwards dis-
placements of 0.001 a.u. for the bond lengths and 0.01◦ for the bond and dihedral
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angles. The gradient in Z-matrix coordinates is computed as

gγ = [E(x+ δxγ)− E(x− δxγ)] /2δxγ , (3.3)

where E is the total energy and δxγ is a displacement in the internal coordinate γ
with respect to the reference coordinates x. The diagonal component of the Hessian
can be obtained in the same run at no extra cost as

hdiag

γ = [E(x+ δxγ)− 2E(x) + E(x− δxγ)] /δx
2

γ . (3.4)

The geometry is updated employing an approximate version of the Newton-Raphson
method as

x�

γ = xγ − gγ/h
diag

γ , (3.5)

where x� denote the new coordinates in Z-matrix representation. To stabilize the
procedure against numerical noise, we add a constant parameter of 5 × 10−5 to all
diagonal elements of the Hessian.

The use of correlated sampling allows us to efficiently determine relative ener-
gies for different geometries from a single reference Monte Carlo walk. The ref-
erence walk is obtained by sampling the wave function Ψ corresponding to the co-
ordinates x and Hamiltonian H while the secondary geometries are characterized
by the corresponding quantities x ± δxγ , Ψγ , and Hγ . Given a reference primary
wave function, the secondary wave function is here simply obtained by recentering
Ψ at the coordinates x ± δxγ without altering the wave function parameters. The
electronic coordinates of the secondary walk are obtained by stretching the primary
walk with the nuclear coordinates through a space-warp transformation as described
in Ref. 72. In the present work, we use the function F (r) = r−4 for the space-warp
transformation.

In summary, the procedure for the geometrical optimization is the following: i)
The determinantal component of the initial wave function is obtained in a CASSCF
calculation; ii) all wave function parameters are optimized in a VMC run (we discuss
later the importance of optimizing the orbital parameters); iii) the energy gradients
are obtained in a correlated sampling VMC calculation; iv) the geometry is updated
as described above. We note that, with the exception of the first iteration, step i) can
be skipped since step ii) can be performed starting from the wave function optimized
at the previous geometry and recentered at the current geometry. This procedure is
iterated until the bond length and bond angle gradients are of the order of 0.001
Hartree/Bohr and 0.0001 Hartree/◦, respectively, that is, comparable to their error
bars. Since the stochastic nature of VMC does not allow to assign one particular ge-
ometry as the minimum one, we perform 5-10 additional iterations after convergence
and average the internal coordinates over these additional steps.

To decrease the computational effort, we keep fixed the carbon-hydrogen and
nitrogen-hydrogen bond lengths and all the bond angles involving terminal hydrogen
atoms. All other internal degrees of freedom are allowed to vary.
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3.2.3 Stability of VMC Energy Gradients

The computation of gradients in VMC poses some stability issues which we an-
alyze by considering for simplicity the gradient expression without the use of the
space-warp transformation. Then, the energy difference between the primary and a
secondary geometry can be written as

E(x)− E(x+ δxγ) =�
HΨ(R)

Ψ(R)
− HγΨγ(R)

Ψγ(R)
Wγ(R)

�

Ψ2

, (3.6)

where �·� denotes the statistical average over the configurations sampled in VMC
from the distribution Ψ2, and the weights are defined as

Wγ(R) =
Ψ2

γ(R)/Ψ2(R)
�
Ψ2

γ(R)/Ψ2(R)
�
Ψ2

. (3.7)

If we expand this energy difference to linear order in δxγ , we obtain a term propor-
tional to �

HΨ(R)

Ψ(R)

∂ logΨ(R)

∂xγ

�

Ψ2

. (3.8)

Since the product inside the square brackets diverges as 1/d2 when the distance d
from the nodes of Ψ approaches zero, the estimator of eq 3.6 obtained by sampling
the square of the primary wave function has infinite variance and it is not possible
to obtain a stable energy difference. To cure this problem, we follow Ref. 73 and
sample a different distribution which is non-zero at the nodes and is defined here as

Ψg(R) = Ψ(R)
max[ε, dn(R)]

dn(R)
, (3.9)

where dn(R) is a measure of the distance from the nodes,

dn(R) =
1

|∇Ψ(R)/Ψ(R)| . (3.10)

and ε is a cutoff parameter [74] chosen as 10−2. The average of Eq. 3.8 can then be
rewritten as �

Ψ2(R)

Ψ2
g(R)

HΨ(R)

Ψ(R)

∂ logΨ(R)

∂xγ

�

Ψ2
g

(3.11)

where the reweighting factor Ψ2(R)/Ψ2

g(R) removes the divergence of the products
inside the brackets. This cures the problem of the infinite variance and allows us to
obtain stable energy differences.
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3.3 Computational Details

We use the program MOLCAS 7.2 [75] to optimize the ground-state geometries of
the model chromophores within all-electron MP2 and DFT with the B3LYP [76]
functional. For the ground-state optimizations of the full retinal model (see Fig-
ure 3.1E), we employ the Gaussian 03 code [77]. The default convergence criteria
are used for both codes.

We also use MOLCAS 7.2 for the all-electron CASSCF, CASPT2, and multi-
state (MS) CASPT2 [78] calculations. The state-average (SA) CASSCF calculations
are performed with equal weights over the states of interest, and the two lowest states
are used in the SA-CASSCF and MS-CASPT2 calculations. In the CASPT2 calcu-
lations, we employ the default IPEA zero-order Hamiltonian [79] unless otherwise
stated, and indicate if an additional constant level shift [80] is added to the Hamilto-
nian. In the CASPT2 calculations for the complete 11-cis retinal chromophore, we
use the Cholesky decomposition of the two-electron integrals [81] with the default
threshold of 10−4. Analytical CASSCF and numerical CASPT2 gradients are used
for geometrical optimizations and minimum energy path (MEP) calculations. In the
CASPT2 calculations, we do not correlate as many lowest orbitals of σ character as
the number of heavy atoms in the model. The default convergence criteria are used
for all calculations.

We perform the EOM-CC calculations with the ACESII [82] and CFOUR [83]
codes. The CC calculations include approximate single and double excitations (CC2)
and single and double excitations (CCSD). Default convergence criteria are used for
all calculations and we do not correlate as many lowest orbitals of σ character as the
number of heavy atoms in the model.

The program package CHAMP [84] is used for the QMC calculations. We em-
ploy scalar-relativistic energy-consistent Hartree-Fock pseudopotentials [85] where
the carbon, nitrogen, and oxygen 1s electrons are replaced by a non-singular s-
non-local pseudopotential and the hydrogen potential is softened by removing the
Coulomb divergence. Different Jastrow factors are used to describe the correlation
with different atom types and, for each atom type, the Jastrow factor consists of an
exponential of the sum of two fifth-order polynomials of the electron-nuclear and the
electron-electron distances, respectively [86]. We also test the effect of including an
electron-electron-nuclear term. The starting determinantal components are obtained
in CASSCF calculations which are performed with the program GAMESS(US) [87].
In all SA-CASSCF calculations, equal weights over the states are employed and the
final CAS expansions are expressed on the weighted-average CASSCF natural or-
bitals. The CAS wave functions of the ground and excited states may be truncated
with an appropriate threshold on the CSF coefficients and the union set of surviving
CSF’s for the states of interest are retained in the QMC calculations. The Jastrow
correlation factor and the CI coefficients are optimized by energy minimization in a
state-averaged sense within VMC with equal weights. When indicated in the text,
also the orbitals are optimized along with the Jastrow and CI parameters. The pseu-
dopotentials are treated beyond the locality approximation [88] and an imaginary

50



3.4 Retinal Models

time step of 0.05 or 0.075 a.u. is used in the DMC calculations.
In the DFT, CASSCF, CASPT2, and CC calculations, we employ either the cor-

relation consistent (cc-pVxZ) [89] or the atomic natural orbital (ANO-L-VxZP) [90]
basis sets. We use the ANO contraction schemes as defined in MOLCAS, that
is, [3s2p1d]/[2s1p] for ANO-L-VDZP, [4s3p2d1f]/[3s2p1d] for ANO-L-VTZP, and
[5s4p3d2f]/[4s3p2d] for ANO-L-VQZP. In the single-point energy calculations, the
ANO-L-VDZP basis set is generally used while the default basis in the geometrical
optimization and MEP calculations is the cc-pVDZ. In the QMC calculations, we
use the Gaussian basis sets [85] specifically constructed for our pseudopotentials. In
particular, we employ the cc-pVDZ basis (denoted by D) and the D basis augmented
with s and p diffuse functions [91] on the heavy atoms (denoted by D+). We also use
the T� and Q� basis sets which consist of the cc-pVTZ and cc-pVQZ, respectively,
combined with the cc-pVDZ for hydrogen. The g functions are not included in the
Q� basis. Most single-point energy calculations use the D+ basis while geometrical
optimizations employ the D basis.

3.4 Retinal Models

The 11-cis retinal chromophore consists of a conjugated carbon chain with a pro-
tonated Schiff base (PSB) at one end and a twisted β-ionone ring at the other end
(see Figure 3.1E). It sits inside the protein pocket of rhodopsin, a seven helix trans-
membrane, where it is covalently bound to Lys-296 via the protonated Schiff base
linkage. In theoretical gas phase studies, there has been no consistent choice of how
to terminate the covalent bond between the positively charge nitrogen in the proto-
nated Schiff base and Lys-296. A single hydrogen, a methyl but also a n-butyl group
have often been used as termination, and this particular choice appears to influence
only slightly the excitation energy [27,40]. Due to the large size of the 11-cis retinal
chromophore, smaller protonated Shiff base models have been mainly investigated
theoretically, which differ in the length of the conjugated chain and the absence of
methyl groups with respect to the complete chromophore.

The retinal models studied in this work are shown in Figure 3.1 and range
from the minimal model (Figure 3.1A) to the full 11-cis retinal chromophore (Fig-
ure 3.1E). The atom labeling shown for the 11-cis chromophore is adopted also
for the other models so that the cis-to-trans isomerization bond is always between
the C11 and C12 atoms, with atom numbering increasing from the carbon to the ni-
trogen end. For the models without the β-ionone ring, we introduce the naming
convention PSBx(y) where x and y are the number of double bonds and methyl
groups, respectively. The PSB3(0) (C5H6NH+

2
) model (A) is the minimal model

of the retinal chromophore and has already been extensively studied in the litera-
ture [15, 17, 20, 22, 25, 41]. Since the methyl group at position C13 plays an im-
portant role in accelerating the isomerization process [15, 17], we also consider
the PSB3(1) (C6H8NH+

2
) model (B), that is, the minimal model (A) with an added

methyl group. The PSB4(1) (C8H10NH+

2
) model (C) has one additional double bond
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Figure 3.1: Model retinal chromophores. The atom numbering for chromophore (E)
is used for all models, so the cis bond is always between C11 and C12. Cyan, blue
and grey represent carbon, nitrogen, and hydrogen, respectively.
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and has been previously studied without the methyl group using the CC and TDDFT
methods [29]. The PSB5(1) (C10H12NH+

2
) model (D) has the full conjugated chain

but is missing the β-ionone ring, and the complete 11-cis retinal chromophore (E)
is here terminated with a single methyl group. With the exception of the 11-cis (E)
chromophore, all other models are planar in the ground state. We note that a direct
comparison with experiments is only possible for the vertical excitation energy of
the 11-cis chromophore (E) since, to the best of our knowledge, none of the smaller
models has been studied experimentally.

3.5 Vertical Excitation Energies
We compute the vertical excitation energies of the lowest singlet excited state (S1)
of all retinal models using the CASPT2, CC2, CCSD, VMC, and DMC approaches.
The ground-state DFT/B3LYP geometries optimized with the cc-pVDZ basis are
used. The model (E) is optimized with no symmetry constraint (C1) while the other
models are planar and are optimized in either Cs or C1 symmetry. The CASPT2
excitations are computed with the standard IPEA Hamiltonian (S-IPEA) and with
the IPEA shift set to zero (0-IPEA), which was default prior to MOLCAS 6.4, in
order to be compatible with previous calculations in the literature.

3.5.1 Dependence on Basis Set and Other Parameters
Before comparing the relative performance of the different methods, we focus on
the minimal model (A) and investigate the dependence of the excitations on the
choice of the basis set and other parameters which may affect the calculations. We
begin with the MS-CASPT2 approach and show in Figure 3.2 the vertical excitations
obtained with the double (D), triple (T), and quadruple (Q) zeta basis sets from the
cc-pVxZ and ANO-L-VxZP series. We correlate all 6 π electrons in the reference
configuration and use a different number m of virtual π orbitals in the CAS(6,m)
expansion. We note that single-state and MS-CASPT2 yield equivalent excitations
for model (A).

We observe that the ANO-L-VxZP series gives a faster convergence for the
CASPT2 excitation energy than the correlated consistent basis. The excitations com-
puted with the D basis are only 0.05 eV higher than the values obtained with the T
and Q basis sets. On the other hand, in the cc-pVxZ series, the D excitations are 0.12
eV higher than the T values, which still differ from the Q results by 0.04 eV. The be-
havior of the CC2 and CCSD excitations with basis set is not shown in the Figure but
parallels closely the one observed for the CASPT2 excitations. Therefore, since the
ANO-L-VDZP basis set gives a good balance between accuracy and computational
cost, it is used hereafter for all single-point CASPT2, CC2, and CCSD calculations.

We find that the CASPT2 results depend very strongly on the choice of the zero-
order Hamiltonian. The difference between the excitation energies obtained with the
standard IPEA Hamiltonian and the IPEA shift set to zero is independent of the basis
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Figure 3.2: MS-CASPT2 vertical excitation (S1) energies of the PSB3(0) model (A)
computed with the standard IPEA Hamiltonian (S-IPEA, filled symbols) and with
the IPEA shift set to zero (0-IPEA, empty symbols). The excitations are obtained
with different basis sets and expansions CAS(6,m) of 6 electrons in m active orbitals.
The ground-state DFT/B3LYP geometry is used.

set used and equal to about 0.3 eV when a CAS(6,6) is employed. As expected, the
dependence on the particular zero-order Hamiltonian is reduced as the wave function
is improved, and the difference between the excitations with and without the IPEA
shift becomes 0.2 eV if the number of active π orbitals in the CAS is increased from
6 to 18. Finally, we observe that the vertical energies obtained with the IPEA shift
set to zero are much more sensitive to the dimension of the CAS since they increase
by 0.07–0.12 eV when m goes from 6 to 18, while the energies obtained with the
standard IPEA Hamiltonian are quite stable and only decrease by about 0.02–0.04
eV.

In Table 3.1, we present an extensive QMC investigation for the minimal model
(A) to assess how different ingredients in the trial wave function affect the excitation
energy. The reference wave function is constructed from a CAS(6,6) expansion
expressed on the weighted-averaged CASSCF natural orbitals in the D+ basis and
truncated with a threshold of 0.02, where only the two-body Jastrow factor and CI
coefficients are optimized in energy minimization in a SA fashion. Starting from
this wave function, we investigate the effect of i) changing the threshold on the
CAS(6,6) expansion in the range 0.01–0.08; ii) increasing the number of active π
orbitals from 6 to 18 in the CAS(6,m) expansion; iii) including an electron-electron-
nuclear (e-e-n) term in the Jastrow factor in addition to the electron-nucleus (e-n) and
electron-electron (e-e) components; iv) optimizing the orbitals in a CAS(6,6) wave
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Table 3.1: VMC and DMC vertical excitation (S1) energies (eV) of the PSB3(0)
model (A), computed with different basis sets and CAS expansions expressed on
the weighted-averaged natural orbitals. The CAS(6,m) active space includes all
6 π electrons occupied in the reference configuration and m active π orbitals. The
threshold on the expansion and the corresponding number of determinants and CSFs
are also listed. Unless indicated, only the Jastrow and CI parameters are optimized.
The ground-state DFT/B3LYP geometry is used.

CAS(6,m) Thr. Det./CSF Jastrow Basis VMC DMC
(6,6) 0.01 183/79 e-n,e-e D+ 4.32(1) 4.22(2)
(6,6) 0.02 101/47 e-n,e-e D+ 4.31(1) 4.20(2)
(6,6) 0.04 66/31 e-n,e-e D+ 4.31(1) 4.21(2)
(6,6) 0.08 23/10 e-n,e-e D+ 4.24(2) 4.19(2)
(6,6)a 0.08 23/10 e-n,e-e D+ 4.25(2) 4.21(2)
(6,6)b 0.08 23/10 e-n,e-e D+ 4.28(1) 4.16(2)
(6,6) 0.02 103/48 e-n,e-e D 4.38(1) 4.29(2)
(6,6) 0.02 103/48 e-n,e-e T� 4.34(1) 4.25(2)
(6,6) 0.02 103/48 e-n,e-e Q� 4.34(1) 4.22(2)
(6,12) 0.02 152/66 e-n,e-e D+ 4.29(1) 4.22(2)
(6,18) 0.02 156/67 e-n,e-e D+ 4.29(1) 4.22(2)
(6,6) 0.02 101/47 e-n,e-e,e-e-n D+ 4.32(2) 4.24(2)
a Orbitals optimized including 40 external orbitals;
b Orbitals optimized including 80 external orbitals.

function with a threshold of 0.08 both with 40 and 80 external orbitals included
in the optimization; v) using different basis sets (D, T�, and Q�). We find that the
choice of basis has a significant effect on the QMC results as the VMC and DMC
excitations computed with the D basis are higher by 0.06(2) and 0.09(3) eV than
the corresponding D+ values. Since the use of the larger T� and Q� basis sets brings
the excitations in closer agreement with the D+ results, we employ below the D+
basis set to compute the QMC excitations of all model chromophores. For this
choice of basis, other ingredients in the trial wave function appear to have a smaller
effect on the VMC and DMC excitation energies which range between 4.24(2)–
4.32(2) and 4.16(2)–4.24(2) eV, respectively.

3.5.2 Results

We collect the vertical excitations of all retinal models computed using the MS-
CASPT2, CC2, CCSD, VMC, and DMC methods on the ground-state DFT/B3LYP
geometries in Table 3.2. The VMC and DMC excitations are obtained using wave
functions where the Jastrow and CI parameters are optimized by energy minimiza-
tion in a SA fashion and the threshold on the CSF expansion is 0.08 for the (E)
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model and 0.02 for all other models. It is evident that, for all models, the CASPT2
excitations obtained with the IPEA shift set to zero are at variance and significantly
lower than the results obtained with all other theoretical methods. The use of the
standard IPEA Hamiltonian raises the excitation energies of all models by as much
as 0.3 eV and brings the CASPT2 values in close agreement with the CC2 results.
The CCSD method yields excitations slightly higher by 0.11–0.17 eV than the CC2
and CASPT2 results obtained with the IPEA Hamiltonian. Finally, the VMC exci-
tations are always higher by 0.1–0.2 eV than the DMC values which agree closely
with the CCSD results.

Table 3.2: Vertical excitation (S1) energies (eV) of the retinal models. The MS-
CASPT2 energies are computed both with the standard IPEA Hamiltonian (S-IPEA)
and without the IPEA shift (0-IPEA). The CAS(n,n) expansion in the CASPT2 and
QMC calculations includes all π electrons in the reference configuration and an
equal number n of π orbitals. CASPT2 and CC employ the ANO-L-VDZP basis,
and QMC the D+ basis. The ground-state DFT/B3LYP geometries are used.

Model MS-CASPT2 CC2 CCSD VMC DMC
n 0-IPEA S-IPEA

A) PSB3(0) 6 3.75 4.06 4.12 4.23 4.31(1) 4.20(2)
B) PSB3(1) 6 3.86 4.18 4.20 4.37 4.52(2) 4.42(2)
C) PSB4(1) 8 3.04 3.35 3.33 3.47 3.59(2) 3.47(2)
D) PSB5(1) 10 2.58 2.87 2.82 2.95 3.08(2) 3.00(3)
E) 11-cis 12 2.03a 2.30 - - 2.59(3) 2.41(3)
a Constant level shift of 0.2 a.u.

For a comparison with experiments and previous theoretical work, we focus on
the full 11-cis retinal chromophore (E) and collect the relevant results in Table 3.3.
In line with previous calculations [24, 30, 58], we find that the excitation energy
of the retinal chromophore depends strongly on the method used to determine its
ground-state structure. The sequence of BLYP, B3LYP, MP2, and CASSCF geome-
tries corresponds to an increase of the degree of bond-length alternation and of the
twisting of the β-ionone ring from −30◦ to −60◦ (see Figure 3.3). Stronger bond al-
ternation and larger twisting angles correspond to larger excitations energies and we
find indeed an increase of 0.5 eV in the CASPT2 excitation both with and without
the IPEA shift, when going from the BLYP to the CASSCF geometry. A compari-
son with CASPT2 geometries of planar retinal models indicate that DFT and MP2
ground-state structures represent a better model for the retinal chromophore in the
gas phase as shown in the Figure 3.6(a) and Figure SI-5 [92] and already observed
in Ref. 20. Even though discarding the CASSCF structures significantly reduces
the spread in excitations, we still have an uncertainty of about 0.1 eV related to the
choice of the particular DFT or MP2 geometry.
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Figure 3.3: Ground-state bond lengths (Å) of the 11-cis chromophore (E) opti-
mized using MP2, DFT/BLYP, and DFT/B3LYP and the cc-pVDZ basis. The
CASSCF(12,12)/6-31G(d) geometry is from Ref. 27. The C5−C6−C7−C8 dihe-
dral angles are −29.7◦, −33.5◦, −40.5◦, and −68.8◦ in BLYP, B3LYP, MP2, and
CASSCF, respectively.

In Table 3.3, we present the single-state (SS) excitations in addition to results
obtained with the MS-CASPT2 approach as done so far in this Section. As already
mentioned, SS-CASPT2 and MS-CASPT2 give equivalent excitations within 0.01
eV for the smaller model (A) as it is expected given the large gap of about 4 eV
between the ground and excited states. However, as the size of the retinal model
increases and the excitation decreases, SS-CASPT2 and MS-CASPT2 start to differ
and this discrepancy grows faster when no IPEA shift is employed. For the 11-cis
model (E) and a gap of about 2 eV, the difference amounts to about 0.10 and 0.15
eV with and without the IPEA shift, respectively, and is independent on the ground-
state geometry. Therefore, the choice of performing single- or multi-state calcu-
lations within CASPT2 represents another internal parameter of the theory which
affects the CASPT2 excitation in addition to the IPEA shift. We remark that, while
MS-CASPT2 gives results which nicely parallel the DMC and CC excitations for
all models, the difference between CASPT2 and other theories increases with sys-
tem size if the single-state approach is used. The choice of the MS theory is our
preference also for compatibility with the CASPT2 excited-state geometrical opti-
mizations presented in the next Sections, where we employ the MS approach as it is
not known a priori whether the molecule will encounter a conical intersection region
during relaxation.
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3 Photoisomerization of the Retinal Chromophore in a New Light

Table 3.3: Single-state (SS) and MS-CASPT2 vertical excitation (S1) energies (eV)
of the 11-cis retinal (E) chromophore. The DMC and experimental estimates are
also listed. The geometries are optimized with the cc-pVDZ basis, and the CASPT2
calculations employ a CAS(12,12) expansion and the ANO-L-VDZP basis.

Method Geometry Eexc

SS-CASPT2 0-IPEA S-IPEA
DFT/BLYP 1.81b 2.12
DFT/B3LYP 1.89b 2.20
MP2 1.92b 2.24
CASSCFa 2.30b 2.65b

MS-CASPT2
DFT/BLYP 1.96b 2.22
DFT/B3LYP 2.03b 2.30
MP2 2.08b 2.35
CASSCFa 2.42b 2.72b

DMC/D+
DFT/BLYP 2.32(3)
DFT/B3LYP 2.41(3)

Expt. [93] 2.05-2.34c

a CASSCF(12,12)/6-31G(d) geometry from Ref. 27;
b Constant level shift of 0.2 a.u.;
c Termination with two methyl groups, -N(CH3)+2 .

We now compare our theoretical results with gas phase photodestruction ex-
periments which are available for the 11-cis model terminated with two methyl
groups [93]. The experimental absorption spectrum displays two main peaks at 2.05
eV (610 nm) and 3.18 eV (390 nm), which have been interpreted as the location
of the vertical excitations to the two lowest singlet excited states (S1 and S2). The
lowest-energy band (S1) displays however a broad shoulder which has a secondary
peak at 2.34 eV (530 nm) and is only about 20 percent lower in intensity that the
absorption maximum at 2.05 eV. It has been previously suggested [33] that the ver-
tical transition lies in the broad shoulder at higher energies and corresponds to the
secondary peak at 2.34 eV. We further propose that the adiabatic and not the vertical
transition may be related to the lowest-energy feature at 2.05 eV. This interpretation
of photodestruction experiments for retinal has in fact a parallel in the theoretical
findings [66] and recent experimental reassessment [94] of photodestruction exper-
iments of the photosensitive Green Fluorescent Protein chromophore. We therefore
report a range of energies between 2.05 eV and 2.34 eV as a more conservative
experimental estimate of the vertical excitation of retinal. Our DMC, single-state
and MS-CASPT2 excitations are compatible with the experimental estimate, espe-
cially if we consider the remaining uncertainty on the ground-state DFT and MP2
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geometries and the fact that we did not include vibrational effects. Setting the IPEA
shift to zero moves the vertical CASPT2 excitation towards the lower end of the ex-
perimental range, namely, the possible location of the adiabatic transition, and the
excitation even falls below the lower bound in the case of the single-state approach.
We note that we could not perform CC calculations for the 11-cis model with the
available codes and that the best CC2 result of 2.10 eV found in the literature [40] is
about 0.20 eV lower than the CASPT2 excitation we compute on a similar B3LYP
geometry. This discrepancy is rather puzzling since the CASPT2 and CC2 excitation
energies agree rather well for all smaller models, and could be due to the particular
basis used in Ref. 40 or to the different response of CC2 and CASPT2 to the addition
of the β-ionone ring missing in the smaller models.

3.6 In-plane Geometrical Optimization
We optimize the in-plane excited-state geometries of the retinal chromophore mod-
els (A, B, C, D) using the CASSCF, MS-CASPT2, CC2, CCSD, and VMC ap-
proaches. We always follow the second root in the optimization and use two roots in
the SA-CASSCF and MS-CASPT2 calculations as well as in the optimization of the
VMC wave functions. The CAS expansion correlates all π electrons and an equal
number of orbitals with the exception of models (A) and (B), where we include more
virtual orbitals to be consistent with previous calculations [15]. As shown in Ref. 22
for model (A), a smaller active space of 6 electron in 6 orbitals yields equivalent
CASSCF results. We impose the planarity of the conjugated chain by constraining
the optimization to Cs symmetry and, unless otherwise stated, we start the excited-
state optimization from the DFT/B3LYP ground-state geometry.

3.6.1 Dependence on Basis Set and Other Parameters
In all geometrical optimizations, we employ the cc-pVDZ basis set. As shown in
Figure 3.4(a) for the minimal (A) model, the effect of using the larger cc-pVTZ
basis set is to systematically shorten all ground- and excited-state CASPT2 bond
lengths by about 0.010–0.015 Å without affecting the bond length pattern as was
also previously observed in Ref. 20. Differently from the case of the excitation
energies, the ANO-L-VDZP basis yields comparable bond lengths to the cc-pVDZ
value, which only disagree by 0.06 and 0.07 Å in the C11−C12 and C12−C13 excited-
state bonds, respectively. A similar behavior as a function of the size of the basis
set is also found for the CASSCF and DFT bond lengths although the shortening
in not as pronounced as for the CASPT2 results. In Figure 3.4(b), we compare
the VMC results obtained with the D and D+ basis sets, which are almost equal.
Interestingly, the VMC results obtained with the D (cc-pVDZ) basis are very close
to the CASPT2/cc-pVTZ results, so the presence of the Jastrow factor appears to
compensate for the use of a smaller basis.

The VMC geometrical optimization is very sensitive to the quality of the trial
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Figure 3.4: Bond lengths (Å) of the PSB3(0) model (A) optimized in the ground
and excited states with the CASPT2 (panel a) and VMC (panel b) approaches, and
different basis sets. The CASPT2 geometries are computed with the cc-pVDZ, cc-
pVTZ, and ANO-L-VDZP basis, and the VMC results with the D and D+ basis
sets. In panel (a), the VMC/D bond lengths are also shown for comparison. Planar
symmetry is imposed.

wave function as shown for model (B) in Figure 3.5. We start the optimization from
the Franck-Condon region and, if we optimize only the Jastrow and CI coefficients
within VMC, we obtain a VMC minimum which corresponds to the bond-inverted
CASSCF geometry. On the other hand, if we include the orbital parameters in the
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Figure 3.5: VMC bond lengths (Å) in the excited state of the PSB3(1) model (B)
computed with two different wave functions. In one case, only the CI and Jas-
trow parameters are optimized within energy minimization in a state-average fashion
while, in the other, all (orbital included) parameters are optimal. Planar symmetry is
imposed.

VMC optimization, we obtain a very different VMC geometry which agrees with
the minimum obtained by the other highly-correlated approaches as shown below.
Thus, in the VMC geometrical relaxation, we need to optimize all wave function
parameters. We also note that preliminary calculations with DMC gradients indicate
that the use of DMC does not mend the behavior of VMC when the DMC gradients
are computed from wave functions with only optimal Jastrow and CI parameters.

3.6.2 Results

To understand how the geometry of the retinal chromophore is modified upon pho-
toexcitation, we begin with the minimal model (A) and show in Figure 3.6(a) the
ground-state bond lengths as obtained with the CASSCF, CASPT2, MP2, VMC,
and DFT/B3LYP approaches. All methods agree in predicting a strong single-double
bond-length alternation with a short, double bond between the central carbons. The
MP2 and CASPT2 geometries are almost exactly equal since the ground state is
dominated by a single configuration (89% weight) and CASPT2 is equivalent to
MP2 for a single-reference CASSCF wave function. The DFT/B3LYP bond lengths
deviate from the MP2 and CASPT2 values by at most 0.01 Å in the two single bonds.
The VMC bond lengths are shorter by about 0.015 Å and this can be explained as a
basis set effect as discussed above. Only the CASSCF approach is at variance with
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Figure 3.6: Bond lengths (Å) of the PSB3(0) model (A) optimized in the ground
(panel a) and excited (panel b) states with the CC2, CCSD, CASSCF, CASPT2, and
VMC methods. The DFT/B3LYP and MP2 ground states are also shown. The cc-
pVDZ basis is used and planarity imposed. CASSCF displays two minima in the
excited state.

the other approaches in the sense that it exhibits a greater bond length alternation as
it has also been observed for larger retinal models [20, 26]. The difference between
CASSCF and the other approaches is of the order of 0.01–0.02 Å for model (A) but
grows as the model becomes larger (see Figure SI-5 [92]). In view of these results,
we find that the DFT/B3LYP approach offers a good balance between performance
and computational cost for the computation of the ground state structure.
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The excited-state bond lengths of the minimal model (A) are shown in Fig-
ure 3.6(b). The CASSCF approach exhibits two almost degenerate minima while
all other approaches yield only one minimum. The first CASSCF minimum (solid
line) displays a lengthening of almost all bonds and a largely preserved bond-length
pattern as compared to the ground state. The second CASSCF minimum (dashed
line) is about 0.022 eV higher in energy than the other CASSCF minimum, and
displays a pronounced bond-length inversion with respect to the ground state. Im-
portantly, we note that the first minimum is found when starting the optimization
from the ground-state geometry while we started from a geometry biased towards
bond inversion to find the second one. In addition, regardless of the starting point,
we only converge to a single CASSCF minimum, corresponding to the first mini-
mum, if the ANO-L-VDZP basis set is used instead of the cc-pVDZ basis set. For
the two CASSCF minima obtained with the cc-pVDZ basis, we report the wave
function character and orbitals in the SI [92].

As for the other methods, we observe that most bond lengths become longer
and more similar in the excited state. The CC2 and VMC structures largely pre-
serve the short-long bond-length pattern of the ground state as observed for the
first CASSCF minimum, while CASPT2 and CCSD give three middle bonds of
almost equal length. At the CASPT2 level, we also investigated extensively the
existence of a bond-inverted minimum by starting the excited-state optimization
from geometries biased towards bond inversion, but could not locate a second mini-
mum. Our CASSCF and CASPT2 results are consistent with the study by Page and
Olivucci [20] using the 6-31G(d) basis set.

Surprisingly, adding a methyl group to the minimal model (A) to generate model
(B) has profound effects on the bond lengths as shown in Figure 3.7. In particular,
there is now only one CASSCF minimum which exhibits a pronounced bond length
inversion as compared to the ground state and is at variance with the results obtained
with all other approaches. The differences among the results obtained with the other
methods is instead significantly smaller. The CC2 geometry of model (B) is similar
to model (A) with a lengthening of most bonds and a largely preserved bond-length
pattern with respect to the ground state. Similarly to model (A), CASPT2 yields
close to equal bond lengths for the three middle bonds with the C12−C13 bond being
the longest while CCSD gives the middle C11−C12 bond as being slightly larger. The
VMC minimum displays similar bond length pattern as CASPT2 but shorter absolute
bond lengths which can be explained as a basis set effect as explained above.

When going to larger models, we find that CASSCF yields only one minimum
where the short-long bond-length pattern is inverted with respect to the ground state
as in the case of model (B). In Figure 3.8, we show the excited-state bond lengths
for model (C) and observe that the CASSCF minimum with bond-length inversion is
at variance with all other approaches. The CASPT2 and CC2 are very close to each
other and exhibit a largely preserved bond length pattern and overall lengthening
of most bonds with respect to the ground state. The CCSD geometry displays no
distinct bond-length pattern and an overall lengthening of most bonds and the VMC
gives a similar bond-length pattern as CCSD but shorter bond lengths as seen above.
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Figure 3.7: Bond lengths (Å) of the PSB3(1) model (B) optimized in the excited state
with the CC2, CCSD, CASSCF, and CASPT2 methods. The DFT/B3LYP ground-
state bond lengths are also shown. The cc-pVDZ basis is used and planar symmetry
imposed. Differently from model (A) without the methyl (Figure 3.6), CASSCF
only displays here one minimum.
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64



3.6 In-plane Geometrical Optimization

1.30

1.34

1.38

1.42

1.46

1.50

C 15
−N

16

C 14
−C

15

C 13
−C

14

C 12
−C

13

C 11
−C

12

C 10
−C

11

C 9
−C

10

C 8
−C

9

C 7
−C

8

B
on

d 
le

ng
th

s 
[Å

]

CASSCF(10,10)
CASPT2(10,10)
CASPT2(10,10)/ANO−L−VDZP
DFT/B3LYP ground state

Figure 3.9: Bond lengths (Å) of the PSB5(1) model (D) optimized in the excited
state with the CASSCF and CASPT2 methods and the cc-pVDZ basis. We also show
the CASPT2/ANO-L-VDZP results. CASPT2 displays two minima in the excited
state with the cc-pVDZ basis and only one minimum with the ANO-L-VDZP basis.
The DFT/B3LYP ground-state bond lengths are also shown. Planar symmetry is
imposed.

In Figure 3.9, we show the excited-state bond lengths of model (D) which has
the full conjugated chain of the retinal chromophore and only misses the β-ionone
ring. For this model, we only show the bond lengths obtained with the CASSCF
and CASPT2 approaches. In addition, we also show CASPT2 results obtained with
the ANO-L-VDZP basis set. As for models (B) and (C), CASSCF gives a structure
characterized by bond-length inversion with respect to the ground state. However,
it is now the CASPT2 approach which gives two profoundly different minima. The
first CASPT2 minimum (solid line) is similar to the CASPT2 geometry of model
(C) with a preserved bond length pattern and overall lengthening of most bonds
as compared to the ground state. The second CASPT2 minimum (dashed line) is
very close to the CASSCF geometry and is about 0.045 eV higher in energy than
the first CASPT2 minimum. Importantly, we note that the first CASPT2 minimum
is found when starting from the ground-state geometry while the second CASPT2
minimum is reached when starting from the CASSCF excited-state geometry. More-
over, the existence of this second minimum is dependent on the choice of the basis:
The two CASPT2 minima obtained with the cc-pVDZ basis are also found when the
6-31G(d) basis set is used (not shown in the Figure) while only the first CASPT2
minimum with no bond length inversion is obtained regardless of the starting geom-
etry when the ANO-L-VDZP basis set is used. These results seem to indicate that
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the bond-inverted CASPT2 structure is a spurious local minimum with no chem-
ical significance, which is not reached when the optimization is started from the
ground-state structure, that is, upon photoexcitation. We finally observe that a pre-
vious CASSCF and CASPT2 study by Page and Olivucci [20] using the 6-31G(d)
basis set reports an excited-state CASPT2 structure of model (D) characterized by
bond inversion. This finding can be easily explained by the fact that they started the
CASPT2 geometrical optimization from the excited-state CASSCF minimum and
were thus not able to reach the other minimum.

In summary, we see that the CASSCF excited-state geometries are at variance
with the CASPT2, CC, and QMC results with the exception of the minimal model
(A) where CASSCF displays two minimum structures, one of which is in agreement
with the geometries obtained by the other approaches. The minimal model appears
however to be a special case since the addition of a single methyl group in model
(B) changes the picture and breaks the agreement between CASSCF and the other
approaches. The inadequacy of CASSCF in describing in-plane excited structures of
the retinal chromophore is also apparent from the results obtained for all the larger
models.

3.7 Out-of-Plane Relaxation

3.7.1 Minimum Energy Paths

We determine the excited-state MEP of the retinal models (B) and (C) using the
CASSCF and CASPT2 approaches. Ground- and excited-state CASSCF MEPs
have previously been calculated for several retinal models [15, 16, 18, 22, 33] and
the common assumption is that the effect of dynamical correlation can be in part re-
covered by simply computing the CASPT2 energy on the final CASSCF geometries
(CASPT2//CASSCF). Our aim is here to assess the validity of this assumption for
the retinal chromophores by comparing the CASSCF and CASPT2 MEPs. To the
best of our knowledge, the CASPT2 method has not been used to determine MEPs
for the retinal models since CASPT2 energy gradients are substantially more expen-
sive than CASSCF ones and still considered too costly for the routine investigation
of these systems [38,55]. In the literature, we only found a CASPT2 study perform-
ing a constrained excited-state potential energy surface scan for the minimal model
(A) [41].

The MEP calculations are performed using the steepest descent path optimiza-
tion scheme implemented in MOLCAS 7.2 and described in Ref. 95. The procedure
consists of a series of constrained geometrical optimizations in mass-weighted co-
ordinates, and yields the intrinsic reaction path. In each optimization, the potential
energy is minimized on a hypersphere of a chosen radius, centered at a given ref-
erence structure. The CASSCF and CASPT2 ground-state geometries define the
Franck-Condon point and initial reference structure for the corresponding MEP cal-
culations. The radius of the hypersphere is either 0.06 or 0.1 a.u. for model (B) and
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0.1 a.u. for model (C). Upon convergence of the constrained geometrical optimiza-
tion, the obtained minimum structure on the hypersphere is taken as new reference
structure, and the procedure is iterated. As in the planar optimizations, the state
averaging in the CASSCF and CASPT2 includes only the ground- (S0) and first
excited-state (S1) since the next state is significantly higher in energy and does not
play an active role (see SI [92]).

We define the torsional angle θ as the C10−C11−C12−C13 dihedral angle and the
torsional angle γ = 180◦ − φ where φ is the C11−C12−C13−C14 dihedral angle and
γ is taken in the range from –180◦ to 180◦. Both torsional angles have a value of 0◦
in the ground state and indicate the deviation for planarity. These angles correspond
to the torsional motion around the C11−C12 and C12−C13 bonds which are double
and single in the ground state, respectively. We note that geometries corresponding
to the angles (θ, γ) and (−θ,−γ) are equivalent since the molecules are planar in
the ground state and there is no preferential direction for torsion.

In Figure 3.10, we show the results from the MEP calculation for model (B)
and report the energies, the bond lengths for the formal double and single bonds
along the conjugated chain, and the torsional angle θ for the central C11−C12 cis
bond. The CASSCF MEP is characterized by two sequential modes. The initial re-
laxation is towards a planar structure similar to the CASSCF Cs minimum discussed
above, which exhibits bond-length inversion with respect to the ground state with the
central C11−C12 bond being the longest in the excited state. This in-plane motion is
followed by a torsion around the central bond towards an angle θ of about 65◦, where
a conical intersection region is encountered and the excited-state MEP is stopped.
The CASSCF MEP is barrierless while there is a small barrier of about 0.1 eV in the
CASPT2//CASSCF energies.

The CASPT2 MEP is distinctly different from the CASSCF one even though
the final outcome of the photoisomerization process is similar. The first difference
is that the initial planar relaxation is towards a structure similar to the CASPT2
Cs minimum which is therefore not characterized by bond inversion. The three
middle bonds become almost equal and the C12−C13 bond, which is long in the
ground state, is the longest in the excited state. The subsequent torsional motion
is around the central C11−C12 bond where we observe a plateau in the excited-
state energy up to an angle θ of about 22◦. When θ is about 17◦, the three middle
bonds begin to change dramatically: The central C11−C12 bond lengthens while the
two neighboring bonds shorten, so their lengths become similar to the ones of the
CASSCF MEP. The excited-state energy starts then decreasing at a faster pace and
the torsional motion continues towards θ ≈ 69◦ where a conical intersection region
is encountered and the excited-state MEP is stopped. A similar behavior is observed
in the constraint excited-state optimization of the minimal model (A) in Ref. 41,
where an energy plateau is observed for θ between 0◦ and 25◦, followed by a sudden
drop in the energy and change in geometry between 25◦ and 30◦. In addition, studies
on the minimal model (A) have found that conical intersection geometries obtained
with CASSCF and CASPT2 are very similar [19,20,23]. This is consistent with the
results obtained here as the CASSCF and CASPT2 MEPs show similar structures
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Figure 3.10: CASSCF and CASPT2 excited-state MEPs for the PSB3(1) model
(B), obtained with a CAS(6,9) expansion and the cc-pVDZ basis. We report the
CASPT2//CASSCF and CASPT2//CASPT2 ground- and excited-state energies (a),
the bond lengths for formal double (b) and single bonds (c), and the absolute value of
the torsional angle θ around the central C11−C12 bond (d). All energies are relative
to the ground-state energies of the CASSCF and CASPT2 ground-state geometries,
which are the starting point of the corresponding MEPs.
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near the conical intersection.
To investigate the effect of lengthening the conjugated chain, we compute the

MEP of model (C) as shown in Figure 3.11. The CASSCF and CASPT2 approaches
give a different isomerization mechanism and the relevant torsional angles are not
only θ around the C11−C12 bond (formal double) but also γ around the C12−C13

bond (formal single). The CASSCF MEP is similar to the one of model (B) and
is characterized by two sequential modes, namely, an initial in-plane bond-length
inversion followed by a torsional motion around the C11−C12 bond until the conical
intersection region is encountered at θ ≈ 88◦. There is also a small torsion around
the C12−C13 bond with an angle γ ≈ 13◦ at the end of the MEP. Differently from
model (B), the CASPT2//CASSCF excited-state energies show no barrier.

The CASPT2 MEP is rather different from the CASSCF one. The initial relax-
ation is towards a planar structure which is similar to the CASPT2 Cs minimum
and exhibits a largely preserved bond-length pattern with respect to the ground state
and an overall lengthening of most bonds. This in-plane motion is followed by a
concerted increase of θ (also active in the CASSCF isomerization) and γ up to a
MEP coordinate of 0.5 a.u. Beyond this point, γ keeps increasing while θ changes
only slightly, so the molecule is twisting only around the C12−C13 bond (formal
single) while all bond lengths remain almost constant. At a MEP coordinate of 1.5
a.u. (γ ≈ −49◦), a barrier is encountered and the MEP optimization cannot pro-
ceed further. Both the ground- and excited-state energies vary very little along the
whole MEP and both states display a long plateau. At the final MEP coordinate,
the excited-state energy is only 0.20 eV lower than the Franck-Condon point and the
ground-state energy higher by about 0.44 eV, so the vertical excitation has decreased
from 3.44 eV to 2.80 eV.

In order to compare the CASSCF and CASPT2 isomerization mechanisms with
the CC2 results, we also perform straight geometrical excited-state optimization with
all three approaches since the code we use to perform CC2 calculations does not have
the capability of computing MEP. For consistency, all optimizations are started from
the DFT/B3LYP ground-state geometries. For model (B), all the approaches yield
isomerization around the central C11−C12 bond and proceed towards the same final
point in the conical intersection region. However, from the CASSCF and CASPT2
MEP results, we know that the isomerization proceed rather differently even though
the final structures are equivalent. Therefore, we cannot infer too much about the be-
havior of CC2 from the agreement of the method on the final structure of model (B)
but proceed with model (C) where the final outcome of the CASSCF and CASPT2
MEP are distinctively different.

We show the optimal CC2 and CASPT2 excited-state structures of model (C) in
Figure 3.12. We observe that CC2 isomerize around the C12−C13 bond as CASPT2
while CASSCF is consistent with the MEP behavior and yields isomerization around
the C11−C12 bond (not shown in the Figure). The CASPT2 optimal geometry has
a torsional angle γ = 43.6◦ and is energetically between the MEP geometries at
1.3 and 1.4 a.u. Even though the isomerization is around the same bond, the op-
timal CC2 torsional angle of γ = 100.1◦ is however significantly different from
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Figure 3.11: CASSCF and CASPT2 excited-state MEPs for the PSB4(1) model
(C), obtained with a CAS(8,8) expansion and the cc-pVDZ basis. We report the
CASPT2//CASSCF and CASPT2//CASPT2 ground- and excited-state energies (a),
the bond lengths for formal double (b) and single bonds (c), and the absolute values
of the torsional angles θ and γ around the C11−C12 and the C12−C13 bond, respec-
tively (d). For CASSCF, θ < 0◦ and γ < 0◦ while, for CASPT2, θ > 0◦ and γ < 0◦.
All energies are relative to the ground-state energies at the CASSCF and CASPT2
ground-state geometries, which are the starting point for the corresponding MEPs.
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3.7 Out-of-Plane Relaxation

Figure 3.12: CC2 (a) and CASPT2 (b) excited-state optimal structures of the
PSB4(1) model (C), obtained by starting the optimization from the DFT/B3LYP
ground-state geometry. The CC2 torsional angles are γ = 100.1◦ and θ = 2.6◦

while CASPT2 yields γ = 43.6◦ and θ = −10.5◦. The CASPT2 structure (c) is
obtained by starting the optimization from the constrained structure just beyond the
barrier (γ = 75◦) in Figure 3.13, and has angles γ = 112.7◦ and θ = 8.1◦.
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Figure 3.13: CASPT2 excited-state energies of the PSB4(1) model (C) optimized
at constrained torsional angles, γ, from 45◦ to 85◦. The energy is shown relative to
the ground-state value at the starting point of the CASPT2 MEP (Figure 3.11). A
CAS(8,8) expansion and the cc-pVDZ basis set are used.

the CASPT2 value. To understand this difference, we investigate the possible exis-
tence of a barrier in the CASPT2 potential energy surface and perform a constrained
excited-state geometrical optimization in CASPT2 by varying the angle γ between
45◦ to 85◦. The resulting excited-state energies are shown in Figure 3.13 and display
a small barrier of about 0.03 eV. If we perform an excited-state CASPT2 optimiza-
tion starting from the constrained structure just beyond the barrier, we recover a
minimum excited-state structure which has a torsional angle of γ = 112.7 (Fig-
ure 3.12(c)) and is in much closer agreement with the CC2 optimal geometry. The
CASPT2 excited-state energy is only 0.09 eV lower than the value for the minimal
structure at γ = 43.6◦. An analysis of the CASPT2 geometries along the constrained
path of Figure 3.13 reveals that the origin of the barrier is due to steric interactions
of the methyl group with the nearby hydrogens since the main difference between
the geometries before and after the barrier is a small rotation of the methyl group.
We also note that a previous CC2 investigation on model (C) without the methyl
group [PSB4(0)] found a small barrier of 0.01 eV at γ ≈ 30◦ and an absolute min-
imum at about 100◦ [29]. Therefore, the apparent presence/absence of a barrier in
the CASPT2/CC2 optimization may possibly be due to the particular geometrical
optimization algorithm used in the different codes or to slightly different initial con-
figurations in the optimization procedure.
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3.7.2 Reactive versus Non-reactive Paths

The CASPT2 MEP of the retinal model (C) gives isomerization around a single
bond, does not lead to a conical intersection region, and corresponds to a non-
reactive path. To investigate whether a rotation around a double bond may give a
reactive path and lead to a photoproduct, we optimize the excited-state CASPT2
geometry of model (C) at constrained torsional angles, θ, around the C11−C12 cis
bond, and show the results in Figure 3.14.

At θ = 0◦, the molecule is unstable towards single-bond rotation, which is not
surprising since the CASPT2 MEP gives isomerization around the same single bond
and is always characterized by small values of the angle θ (less than 10◦). The re-
sulting constrained geometry has an angle γ of about 51◦ and is in fact very similar
to the last point of the CASPT2 MEP. If we increase θ from 0◦ to 35◦, the angle γ
diminishes while the bond lengths become closer to the values in the initial part of
the CASPT2 MEP. Concurrently, the excited-state energy rises and displays a small
barrier of about 0.06 eV, which peaks at θ = 35◦. The barrier is overcome at θ = 40◦

where we suddenly observe bond inversion and a large increase in the ground-state
energy and decrease in the excited-state energy. The degree of bond inversion is
however not as pronounced as in the CASSCF MEP and the geometries are charac-
terized by a larger residual rotation around the single bond. If we further increase θ,
the excitation energy continues to decrease and we encounter a conical intersection
region. The CASPT2 isomerization around the double bond corresponds therefore
to a reactive path which is characterized by a small barier and eventually leads to a
conical intersection region whose topology is rather similar to the CASSCF one.

To assess the behavior of the CC approach, we also perform constrained CC2
optimization around the double bond. The CC2 optimization at small values of θ
leads to a single-bond rotation with very large values of γ (greater than 90◦). This
is compatible with the previous observation that the small steric barrier observed in
CASPT2 (see Figure 3.13) is practically absent in the single-bond isomerization at
CC2 level. If we increase θ up to 60◦ and always start the optimization from the op-
timal constrained geometry at the previous angle, we cannot sufficiently reverse the
large rotation around the single bond and the excited-state energy increases instead
of decreasing. To assess the existence of a path leading to a conical intersection, we
follow therefore a different procedure and simply compute the CC2 energies on the
optimal constrained CASPT2 geometries of Figure 3.14. We find that the ground-
and excited-state CC2 energies are in very good agreement with the CASPT2 val-
ues up to θ = 45◦. As expected and also discussed in Ref. 37, CC2 encounters
convergence problems at larger values of θ as the system is approaching the coni-
cal intersection region. Consequently, the use of CC2 confirms the existence of a
reactive path which corresponds to double-bond rotation, displays a small barrier,
and leads to lower excited-state energies. However, the approach is not suitable to
follow the system through the conical intersection towards a photoproduct.
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Figure 3.14: CASPT2 excited-state optimization of the PSB4(1) model (C) at con-
strained torsional angles, θ, from 0◦ to 60◦. We report the CASPT2//CASPT2
ground- and excited-state energies (a), the bond lengths for formal double (b) and
single bonds (c), and the absolute value of the torsional angle γ around the C12−C13

bond (d). The quantities computed at the CASPT2 Franck-Condon (FC) point are
also shown in all panels. A CAS(8,8) expansion and the cc-pVDZ basis set are used.
For the torsional angle, θ < 0◦ and γ > 0◦.
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3.8 Discussion and Conclusions

We have presented a systematic investigation of model retinal chromophores in the
gas phase with special emphasis on geometrical relaxation in the excited state. One
aim of the work is to assess the relative performance of very diverse computational
approaches as CASSCF, CASPT2, CC, and QMC in describing conformational
changes in the excited states. The other major goal is to determine the validity of
the generally accepted picture resulting from CASSCF calculations that the excited-
state relaxation of retinal chromophores proceeds via bond inversion and torsional
motion around formal double bonds. Differently from previous studies, we employ
approaches such as CASPT2 and QMC which are superior to CASSCF as they offer
a balanced description of both dynamical and static correlations.

We have also computed the vertical excitations of the retinal models using CC,
CASPT2, and QMC and we begin our discussion with a few comments on these re-
sults. We find that the CC and DMC methods give similar excitations for all retinal
models and that the CASPT2 excitations are quite sensitive to the internal parame-
ters of the theory. In particular, the excitations computed with the IPEA zero-order
Hamiltonian are in close agreement with the CC and DMC values while resorting to
the original CASPT2 formulation lowers the excitations by as much as 0.3 eV. The
IPEA Hamiltonian was developed to give on average more accurate excitations [79]
and its use is here corroborated by the good agreement with other highly-correlated
approaches. We also find that the IPEA excitations are more robust as they converge
faster with the size of the CAS expansion and are less sensitive to the use of a single-
or multi-state approach.

For a comparison with experiments, we consider the 11-cis chromophore where
gas phase photodestruction spectroscopy experiments are available [93]. To interpret
the complex absorption spectrum of retinal, we follow the recent reassessment of
similar experiments on a different chromophore [94] and suggest that the lowest-
energy peak corresponds to the adiabatic transition while the vertical lies in the broad
shoulder around 2.34 eV. Our CASPT2 and DMC vertical excitations computed on
the DFT and MP2 ground-state geometries span an energy range of 2.2-2.4 eV which
is consistent with this experimental estimate especially given that we did not include
vibrational effects which are strong in this system. The excitations computed on
the CASSCF geometry are instead significantly higher but can be discarded as our
CASPT2 optimizations of planar retinal models show that DFT and MP2 give more
accurate geometries than the CASSCF approach.

We discuss now the core of our work and analyze the performance of the various
theoretical approaches in describing the excited-state relaxation of retinal models.
Our in-plane optimization of the retinal chromophores indicate that the excited-state
structures optimized with CASPT2, CC2, CCSD, and VMC agree rather closely
while they are at variance with the CASSCF geometries. The CASSCF approach
gives strong bond inversion in the excited state, which is not observed when opti-
mizing the structures with the other approaches. According to CASPT2, CC, and
VMC, photoexcitation weakens all bonds, which stretch and become partly more
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similar in length while preserving the general bond-length pattern of the ground
state. To investigate a non-trivial out-of-plane relaxation, we need to consider a
chromophore larger than the model with three double bonds (A or B) since we find
that model (B) isomerizes around the central bond both at the CASPT2 and CASSCF
level even though the initial skeletal relaxation proceeds rather differently in the two
approaches. Therefore, we investigate the minimal energy path for the out-of-plane
motion of model (C) with four double bonds and find that excited-state relaxation
at the CASPT2 level proceeds preferentially via a torsional motion around a bond
which is formally single in the ground state in agreement with the previous CC cal-
culations by Send and Sundholm [29, 31, 35, 37]. This torsional motion stops at an
angle of about 45◦ and does not lead to a conical intersection region. On the other
hand, in the CASSCF approach, bond inversion is followed by torsion around the
cis bond and the molecule is immediately funneled into a conical intersection region
from where isomerization can proceed towards the trans product. To investigate the
existence of a reactive path at the CASPT2 level, we also consider the constrained
excited-state optimization of model (C) around the cis double bond and find a small
barrier to isomerization at rather large angles of rotation. Beyond this barrier, the
model finally reaches the conical intersection region similarly to the CASSCF ap-
proach.

In summary, our CASPT2 results support the picture of a very flexible retinal
chromophore in the excited state, where photoexcitation lengthen all bonds so that
torsional motion around nearly any bond may contribute to the dynamics. These
findings are consistent with recent CC studies [37] which show that retinal models in
the excited state have small or vanishing torsional barriers around both formal single
and double bonds. This picture must be contrasted to the results of CASSCF calcula-
tions which give a stiff chromophore that can only twist around formal double bonds.
The flexibility of the excited chromophore in the gas phase observed in CASPT2 and
CC calculations is also compatible with the observation in solution experiments of
the existence of multiple minima possibly corresponding to different torsional con-
formations [67]. Moreover, it has been proposed that the multi-exponential decays
observed in solution are related to the possible presence of multiple excited-state
paths, some of which are reactive and lead to the photoproduct via the crossing of a
conical intersection region while others are non-reactive, do not lead to conical in-
tersection, and are dominant in solution [67]. This interpretation is compatible with
our observation of torsional motion around formal single bonds, which is favored
starting from the Franck-Condon region, stops at intermediate angles, and does not
lead to photoproducts via a conical intersection.

Finally, our results demonstrate the importance of including a balanced descrip-
tion of dynamical and static correlation in the computation of the excited-state gra-
dients. The favorable comparison with the CASPT2 approach indicates that the
CC2 method is a useful tool for the study of retinal systems (at least far from the
conical intersection region) and that QMC can give accurate gradients when all pa-
rameters in the wave function are optimized in energy minimization. Our results
raise serious concerns about the common use of the CASSCF approach to investi-
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gate the geometrical relaxation of retinal systems and show that computing single-
point CASPT2 excitations on CASSCF geometries to partially include the neglected
dynamical correlation is generally not a valid procedure to obtain reliable poten-
tial energy surfaces. In conclusion, our findings call for a reinvestigation of the
photoisomerization mechanism of retinal in the gas phase as well as in the protein
environment with higher-level methods than the CASSCF approach.
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[48] U. F. Röhrig, L. Guidoni, and U. Rothlisberger, ChemPhysChem 6, 1836
(2005).

[49] M. Hoffmann, M. Wanko, P. Strodel, P. H. Konig, T. Frauenheim, K. Schul-
ten, W. Thiel, E. Tajkhorshid, and M. Elstner, J. Am. Chem. Soc. 128, 10808
(2006).
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Chapter 4

Excitation Energies of Retinal
Chromophores: Role of the
Structural Model†

We employ a variety of highly-correlated approaches including quantum Monte
Carlo (QMC) and the n-electron valence state perturbation theory (NEVPT2) to
compute the vertical excitation energies of retinal protonated Schiff base (RPSB)
models in the gas phase. We find that the NEVPT2 excitation energies are in
good agreement with the QMC values and confirm our previous findings that the
complete-active-space perturbation (CASPT2) approach yields accurate excitations
for RPSB models only when the more recent zero-order IPEA Hamiltonian is em-
ployed. The excitations computed with the original zero-order formulation of the
CASPT2 approach are instead systematically red-shifted by more than 0.3 eV. We
then focus on the full 11-cis retinal chromophore and show that the M06-2X and
MP2 approaches provide reliable ground-state equilibrium structures for this system
while the complete-active-space self-consistent field (CASSCF) geometry is charac-
terized by significantly higher ground-state energies at the NEVPT2 and CASPT2
level. Our calibration of the structural model together with the general agreement
of all highly-correlated excited-state methods allows us to reliably assign a value of
about 2.3 eV to the vertical excitation of 11-cis RPSB in the gas-phase.

4.1 Introduction
The retinal protonated Schiff base (RPSB) chromophore is the light-sensitive mole-
cule present in vertebrate visual opsin proteins, where the interaction with the pro-
tein tunes its absorption over a great range of wavelengths from 425 to 560 nm [1].
To understand the spectral properties of this chromophore and distinguish between

†This chapter has been published as O. Valsson, C. Angeli, and C. Filippi, “Excitation Energies
of Retinal Chromophores: Critical Role of the Structural Model”, Phys. Chem. Chem. Phys. 2012,
14, 11015–11020
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its intrinsic chemical features and the role of the interaction with the protein en-
vironment, the RPSB chromophore has been the subject of extensive theoretical
and experimental studies in the gas phase, solution, and protein over the last two
decades [1–39]. Many theoretical investigations have focused on the determination
of the location of the vertical excitation in the gas phase [20–23, 26–28] and, more
recently, photo-dissociation experiments have probed the chromophore in the gas
phase to assess its absorption properties [17–19].

The theoretical determination of the vertical excitation of RPSB is complicated
by the fact that the the estimate depends rather strongly on the methodology em-
ployed both to compute the excitation energy and the equilibrium ground-state ge-
ometry. Regarded as a gold standard for the computation of excitation energies [40],
multi-reference perturbation theory (CASPT2) based on complete-active-space self-
consistent field (CASSCF) wave functions has often been used in retinal studies in
combination with CASSCF ground-state equilibrium geometries [19,20,31,34,41–
45]. The two most common choices of zero-order Hamiltonian in CASPT2 [46,
47] have however been recently shown to produce excitation energies of RPSB
systems differing by more than 0.3 eV for the same structural model [48]. Our
quantum Monte Carlo (QMC) calculations [48] suggest that the more recent zero-
order Hamiltonian, developed to overcome various limitations of the original ap-
proach [47], yields superior results, and that the use of the CASSCF method to de-
termine ground-state equilibrium geometries is not adequate for RPSB and should
be abandoned in favor of other approaches such as density functional theory with the
M06-2X functional or the MP2 approach [48, 49]. Finally, the situation is not less
confusing on the experimental side as photo-dissociation spectroscopy has produced
multiple spectra, sometimes differing for the same RPSB system [18,19]. Currently,
the relation between photo-dissociation and optical absorption spectra is in fact the
subject of active investigation and debate [49–51].

Here, we revisit the long-debated topic of the vertical excitation energies of
RPSB models with the use of the recently introduced n-electron valence state per-
turbation theory (NEVPT2) [52–55]. This modern multi-configuration perturbation
approach is also based on CASSCF wave functions but relies on a more advanced
zero-order Hamiltonian than CASPT2, where all bielectronic interaction are explic-
itly included for the active electrons. The similarity between NEVPT2 and CASPT2
in the zero-order wave function and their difference in the zero-order Hamiltonian
renders their comparison quite interesting to elucidate how various ingredients affect
such perturbative calculations. Importantly, these NEVPT2 calculations also provide
an independent assessment of our QMC and other highly-correlated calculations of
the vertical excitation energies of RPSB models.

The chapter is organized as follows. In Section 4.2, we describe the computa-
tional details and, in Section 4.3, introduce the RPSB models we investigate. We
present the results for the vertical excitation energies in Section 4.4 and for the de-
pendence on the choice of structural model in Section 4.5. Finally, in Section 4.6,
we discuss our results and conclude.
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4.2 Computational Details

We employ here the ANO-L-VDZP basis set [56] with the [3s2p1d] contraction on
the C and N atoms, and the [2s1p] contraction on the H atoms. As we have shown
in our recent studies [48, 49], this basis set yields excitation energies of the minimal
RPSB model converged to better than 0.05 eV within both coupled cluster and multi-
reference perturbation theory [48]. For the full 11-cis retinal, this basis gives even
smaller basis-set errors since the corresponding excitation is only 0.01 eV higher
than the values obtained with augmentation or a larger [4s3p1]/[3s1p] contraction
(see ESI [57]).

We perform the complete active space self-consistent field (CASSCF) calcula-
tions with the MOLCAS [58] and the ORCA 2.8 [59–61] codes. In the ORCA
calculations for 11-cis retinal, the RIJCOSX approximation [62] for the CASSCF
steps and the RI approximation [63] for the integral transformation steps are used.
Since a corresponding RI auxiliary basis set is not available for the ANO-L-VDZP
basis set, we use the aug-cc-pVTZ auxiliary basis set [64,65]. We have adopted and
validated this procedure in our recent work on cyanine dyes [66].

The n-electron valence state perturbation theory [52–55] (NEVPT2) calculations
in both the partially contracted (PC) and the strongly contracted (SC) variants are
performed using the ORCA 2.8 code and a stand-alone code interfaced to MOL-
CAS. The orbital energies for the doubly occupied and virtual orbitals appearing in
the Dyall Hamiltonian [67] (used for the definition of the zero-order Hamiltonian in
NEVPT2) are obtained by the diagonalization of a generalization of the Fock opera-
tor [68] (canonical orbital option in ORCA). For the NEVPT2 calculations with the
ORCA code, in the construction of the third- and fourth-order density matrices for
11-cis retinal, the CASSCF wave function is truncated so that only configurations
with a weight larger than a threshold of 10−10 are kept. As shown in the ESI [57], this
value for the threshold yields converged results. In the computation of the NEVPT2
excitation energies, we use the same CASSCF wave functions as in our previous
CASPT2 study [48]. Specifically, we employ state-average (SA) CASSCF wave
functions with equal weights over the two lowest-energy states (S0 and S1). The
CAS active space consists of all π electrons in the reference and the same number
of active π orbitals (see ESI [57]).

For the CASPT2 calculations, we use two different zero-order Hamiltonians.
One Hamiltonian (0-IPEA) is based on a generalization of the Fock operator for
multireference wave functions, which was proposed when the CASPT2 approach
was first introduced [46], and has been used in CASPT2 calculations for almost
two decades. The second Hamiltonian, named standard IPEA (S-IPEA), is based
on a modification (shifting) of the 0-IPEA zero-order Hamiltonian to correct for a
systematic error in the original formulation [47], and is the standard option in the
latest versions of MOLCAS. We indicate when a constant imaginary shift [69] is
used in the CASPT2 calculations to eliminate intruder-state problems.

The CC3 calculations are performed with the Dalton 2.0 program [70]. The
CASPT2, QMC, CC2, and CCSD results are from our previous work [48], to which
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we refer the reader for further details. For the DFT geometrical optimizations with
the M06-L [71], M06 [72], M06-2X [72], and M06-HF [73] functionals and the
cc-pVDZ basis set, we use the Gaussian 09 code [74].

4.3 Retinal Models

11 12

1413
109

15 168
7

6

5

43

2

1

A B

DC

E

16

79

16

14

9

14

9

φ

Figure 4.1: Model RPSB chromophores: A) PSB3(0), B) PSB3(1), C) PSB4(1),
D) PSB5(1), E) 11-cis chromophore. The naming PSBx(y) denotes the number of
double bonds and methyl groups, x and y, respectively. The atom numbering for
chromophore E is used for all models, so the cis bond is always between C11 and
C12.
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4.4 Vertical Excitation Energies

The models of RPSB considered in this work are depicted in Figure 4.1. They
range from the minimal model (A) to the full 11-cis chromophore (E). For models A
to D, we use the naming convention PSBx(y) where x and y indicate the number of
double bonds and methyl groups, respectively. For the 11-cis chromophore (E), we
consider the 6s-cis(-) orientation of the β-ionone ring [49], so the C5−C6−C7−C8

dihedral angle of the ring with respect to the conjugated chain (denoted as φ) ranges
between -30◦ and -70◦ in the various ground-state equilibrium geometries consid-
ered here. Unless otherwise stated, the ground-state equilibrium geometries are
taken from our previous study [48] and are optimized within DFT with the B3LYP
functional and the cc-pVDZ basis set.

4.4 Vertical Excitation Energies
In Table 4.1, we report the vertical excitation energies computed with NEVPT2
and CC3 and the ANO-L-VDZP basis, together with the CC2, CCSD, CASPT2,
and DMC results we have previously obtained with the same basis set and ge-
ometries [48]. We only list the single-state NEVPT2 and CASPT2 excitation en-
ergies since the difference with the corresponding quasi-degenerate NEVPT2 and
the multi-state CASPT2 values is negligible for models A, B, and C, and less than
0.06 eV for model D (see ESI [57]).

Table 4.1: Vertical excitation energies (eV) of the RPSB models. The results are
obtained employing the ANO-L-VDZP basis set and the ground-state DFT/B3LYP
equilibrium geometries. Note that here we present single-state (SS) CASPT2 values
while multi-state (MS) CASPT2 values are shown in Table 3.2.

A B C D E
Method PSB3(0) PSB3(1) PSB4(1) PSB5(1) 11-cis
SA-CASSCF 4.56 4.80 3.74 3.10 2.51

CASPT2/0-IPEA 3.74 3.85 2.99 2.50 1.85a

CASPT2/S-IPEA 4.05 4.17 3.32 2.82 2.20

NEVPT2/PC 4.10 4.22 3.37 2.87
NEVPT2/SC 4.17 4.28 3.43 2.92 2.26

CC2 4.12 4.20 3.33 2.82
CCSD 4.23 4.37 3.47 2.95
CC3 4.11 4.24

DMC 4.20(2) 4.42(2) 3.47(2) 3.00(3) 2.37(3)
a Constant imaginary level shift of 0.1 au;
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For all retinal models, it is immediately evident that the CASPT2 approach with
the old 0-IPEA Hamiltonian is at variance with all other highly-correlated meth-
ods. The CASPT2/0-IPEA excitation energies are systematically red-shifted by
more than 0.3 eV with respect to the values obtained with the other approaches. The
use of the standard IPEA Hamiltonian (S-IPEA) significantly improves the CASPT2
results and brings them closer to the NEVPT2, CC, and DMC excitation energies.
These findings confirm the superiority of the S-IPEA with respect to the 0-IPEA
CASPT2 variant, and the presence of a systematic error in the 0-IPEA approach,
which had in fact prompted the CASPT2 developers to propose an improved zero-
order Hamiltonian.

Focusing on the multi-reference perturbative approaches, we observe that the
NEVPT2 and CASPT2/S-IPEA results are in very good agreement with each other
for all retinal models, and within a narrow range of about 0.1 eV. The NEVPT2/PC is
the higher quality variant of NEVPT2 and gives the best agreement with CASPT2/S-
IPEA. However, both the SC and PC variants of NEVPT2 yield rather similar ex-
citation energies, which is an indication of the good quality of the zero-order wave
functions and the consequent reliability of the results [55, 75]. Finally, for all reti-
nal models, the difference between the CASSCF excitation energies and the values
obtained with the CASPT2/S-IPEA and NEVPT2 methods is rather small and of the
order of 10%. This is also a clear indication of a balanced description of the ground
and excited states at zero-order, and shows that the effect of the dynamical correla-
tion on the excitation energies is minor in these systems (with the possible exception
of the B model). For all these reasons, the CASPT2/S-IPEA and NEVPT2 results
can be considered reliable.

All other highly-correlated approaches are in good agreement with NEVPT2. In
particular, CC2, CC3, and CCSD yield rather similar excitations, with the CC2 val-
ues being always red-shifted by about 0.1 eV with respect to CCSD, and very close
to CC3 for models A and B. For the 11-cis RPSB model, we cannot compute the
CC2 excitation energy with the codes we have available but we can compare to the
CC2 results of Ref. 27, where an excitation energy of 2.10 eV on a B3LYP geometry
is reported. The difference between this CC2 value and the corresponding CASPT2
and NEVPT2 excitation energies is therefore larger than for the smaller models,
indicating that CC2 might respond differently to the addition of the β-ionone ring.

Finally, the excitations computed within diffusion Monte Carlo are slightly blue-
shifted with respect to the NEVPT2 results and in good agreement with CCSD. The
only exception is perhaps the B model, where the discrepancy between CCSD and
DMC on the one side and the multi-reference perturbative approaches on the other is
larger than 0.1-0.2 eV. It should be noted that, for model B, the difference between
the CASSCF and PT2 excitations is also larger than for all other models (0.6 eV ver-
sus 0.3-0.4 eV), indicating a more important role of dynamical correlation. For the
11-cis RPSB model, we have here improved the quality of the QMC wave functions
with respect to our previous work [48]. In particular, we have further increased the
number of configuration state functions (CSF) included in the determinantal compo-
nent of our Jastrow-Slater wave functions from 10 to 45, by decreasing the threshold
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imposed on the CSF coefficients from 0.08 to 0.04. The resulting DMC excitation
energy is 2.37(3) eV, slightly lower but still compatible with the previous value of
2.41(3) eV.

4.5 Choice of Ground-State Geometry

Table 4.2: Ground-state and vertical excitation energies of the 11-cis (E) model
computed on the DFT, MP2, and CASSCF ground-state equilibrium geometries.
For the BLYP, B3LYP, and M06-2X DFT functionals, the percent of exact exchange
is reported in parenthesis. The bond length alternation (BLA) and the angle of the
β-ionone ring (φ, see Figure 4.1) are also listed.

Geometry
BLYP B3LYP M06-2X MP2 CASSCFa

(0%) (20%) (54%)
BLA (Å) 0.024 0.033 0.051 0.044 0.101
φ (◦) -29.7 -33.5 -38.0 -40.5 -68.8

Ground-state energies (kcal/mol)
CASPT2/S-IPEA +3.60 +0.69 0.00 -0.40 +7.01
NEVPT2/SC +3.99 +0.44 0.00 +0.60 +9.05

Vertical excitation energies (eV)
SA-CASSCF 2.36 2.51 2.71 2.64 3.25

CASPT2/0-IPEA 1.77b 1.85b 1.94b 1.89b 2.27
CASPT2/S-IPEA 2.12 2.20 2.30 2.24 2.61
NEVPT2/SC 2.18 2.26 2.33 2.27 2.60
DMC 2.22(4)c 2.37(3)c
a CASSCF(12,12)/6-31G* geometry from Ref. 20.
b Constant imaginary level shift of 0.1 au.
c The threshold on the CSFs is 0.04.

We now focus on the full 11-cis chromophore and on how the choice of the struc-
tural model affects its vertical excitation energy. In Table 4.2, we list the CASPT2,
NEVPT2, and DMC excitation energies computed on the ground-state geometries
optimized within MP2, CASSCF, and DFT with the BLYP, B3LYP, and M06-2X
functionals. We also list the ground-state CASPT2/S-IPEA and NEVPT2 energies
together with the most important geometrical parameters [30, 49], namely, the bond
length alternation (BLA) along the conjugated chain and the angle φ of the β-ionone
ring. The BLA is here defined as the difference between the averages of the sin-
gle and double carbon-carbon bonds lengths, and computed including the bonds
between C5 and C15.
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To optimize the ground-state geometry within DFT, we employ three functionals
with a different amount of exact exchange, namely, BLYP (0%), B3LYP (20%), and
M06-2X (54%). This choice of DFT functionals is appropriate for retinal as they
span a reasonable range of percentage of exact exchange, one of the parameters in
the functional which mainly impacts the geometrical features of this system [30,49].
We have recently demonstrated that M06-2X gives a very accurate description of the
all-trans RPSB chromophore [49] while larger or smaller amounts of exact exchange
lead to structures of inferior quality. As shown in Table 4.2, a similar performance
is observed for the 11-cis conformer of RPSB (also see ESI [57] for geometries
optimized with other DFT functionals such as M06-HF). The ground-state NEVPT2
energy is the lowest on the M06-2X geometry while CASPT2 gives an energy only
0.4 kcal/mol higher than the corresponding value on the MP2 geometry. Overall, the
B3LYP, M06-2X, and MP2 equilibrium geometries are of comparable good quality
since the corresponding ground-state energies are within 1 kcal/mol of each other
both at the NEVPT2 and CASPT2 level. The ground-state geometry optimized with
BLYP (0%) is instead less optimal.

The CASSCF geometry is significantly different from all other geometries, with
bond-length alternation and angle of the β-ionone ring almost double than the values
for the M06-2X geometry. These features of the CASSCF structure have a marked
effect on the NEVPT2/SC and CASPT2/S-IPEA ground-state energies, which are
more than 7 kcal/mol higher than the corresponding values computed on the M06-
2X geometry. This confirms our previous findings [49] on the inadequacy of the
CASSCF method to describe the geometries of RPSB systems.

As shown in Figure 4.2, the vertical excitation energy of the 11-cis model is
very sensitive to the choice of ground-state structure and to the variations in bond-
length alternation and angle of the β-ionone ring as also previously observed in
Refs. 23, 26, and 30. In going from the BLYP to the CASSCF structure, both ge-
ometrical parameters significantly increase and the corresponding excitation energy
grows by as much as 0.4-0.5 eV. All highly-correlated approaches display the same
trend as a function of the geometry, with CASPT2/S-IPEA and NEVPT2 consis-
tently agreeing within 0.06 eV. As observed for all retinal models in the previous
section, the CASPT2/0-IPEA excitations are always red-shifted by about 0.3 eV.

The M06-2X geometry is characterized by a CASPT2/S-IPEA and a NEVPT2
excitation energy of about 2.3 eV and, together with the B3LYP and MP2 structures,
defines a rather narrow range of excitations for the 11-cis model between 2.20 eV
and 2.36 eV. In striking contrast, the CASSCF equilibrium geometry yields excita-
tion energies close to 2.6 eV, that is, more than 0.3 eV blue-shifted with respect to the
values at the other geometries. As discussed above, the CASSCF geometry is a less
accurate representation of the equilibrium structure of this system and, not surpris-
ingly, is characterized by excitations energies at variance with the ones obtained on
more realistic geometries. Finally, it is interesting to note that the CASPT2/0-IPEA
excitation energy on the CASSCF geometry is very close to the CASPT2/S-IPEA
value at the optimal M06-2X geometry. In the past, this coincidental agreement has
masked the inadequacy of the use of CASSCF geometries for retinal. More gener-
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Figure 4.2: Vertical excitation energies (eV) of the 11-cis retinal (E) model com-
puted on the DFT, MP2, and CASSCF ground-state equilibrium geometries.

ally, the use of the CASSCF approach for the calculation of ground-state structures
is often coupled to the use of the 0-IPEA zero-order Hamiltonian for the calculation
of the CASPT2 excitations, which results in a fortuitous cancellation of errors [48].
Nevertheless, we emphasize again that the results obtained here with a variety of
highly-correlated methods clearly indicate that the 0-IPEA approach severely un-
derestimates the excitation energies of retinal and should therefore not be used.

Finally, we note that, for the all-trans RPSB chromophore characterized by a
similar orientation of the β-ionone ring, we have obtained CASPT2/S-IPEA and
NEVPT2 excitation energies of 2.31 eV and 2.34 eV, respectively, when using a
M06-2X geometry [49]. These values are very close to the corresponding excita-
tion energies of the 11-cis RPSB, demonstrating that the difference between the two
isomers does not affect the excitation energies.

4.6 Discussion and Conclusions
We have here extended our previous theoretical study of RPSB models [48] to clarify
several important issues, which have been the subject of a lingering debate. To this
aim, we have employed the NEVPT2 method which is a modern multi-configuration
perturbation approach based on CASSCF wave functions. NEVPT2 relies on a more
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advanced zero-order Hamiltonian than CASPT2 (all bielectronic interaction among
the active electrons are explicitly taken into account), which makes NEVPT2 free
from some of the problems affecting CASPT2 as the possible appearance of intruder
states [55]. Although based on different zero-order Hamiltonians, NEVPT2 and
CASPT2 share the same methodological framework so that NEVPT2 can serve as
an interesting and yet independent test of the results previously obtained by our
group [48, 49] and other authors [20–23, 26, 28]. For example, it can help us to
understand which zero-order Hamiltonian, S-IPEA or 0-IPEA, should be used in the
CASPT2 calculations and further validate the findings obtained with other highly-
correlated approaches such as CC or QMC.

For all retinal models, we find that NEVPT2 yields excitation energies rather
close to the values computed with the CASPT2/S-IPEA, CC, and DMC methods.
The CASPT2/0-IPEA excitation energies are instead systematically red-shifted by
more than 0.3 eV with respects to all other results. The overall agreement of the
NEVPT2, DMC, and CC methods gives us confidence on the quality of our estimates
for the excitation energies of retinal models. Furthermore, our findings support the
conclusion that the use of the S-IPEA zero-order Hamiltonian in CASPT2 is superior
to the older 0-IPEA variant, which has been so often employed in retinal studies over
many years [19, 20, 31, 34, 41–45].

To assess the impact of the choice of ground-state equilibrium geometry on the
excitation energy, we then focus on the 11-cis retinal. We find that the M06-2X
and MP2 methods are reliable approaches to compute the equilibrium structure of
this system while the use of the CASSCF method yields a structure characterized
by much higher ground-state CASPT2/S-IPEA and NEVPT2 total energies. Fur-
thermore, the geometrical parameters of the CASSCF model (i.e. BLA and the ori-
entation of the β-ionone ring) are significantly different from those of the accurate
M06-2X geometry. Importantly, these features of the CASSCF geometry strongly
affect the excitation energy, which is blue-shifted by as much as 0.3 eV with re-
spect to what is obtained on the better M06-2X structure. The use of CASSCF
geometries for retinal systems is quite widespread in studies on the retinal molecule
[19, 20, 31, 34, 41–45] and has been generally combined with the CASPT2/0-IPEA
method for the calculation of the excitation energies. This combination leads to an
incorrect description of the system, which is however masked by a fortuitous cancel-
lation of errors in the estimate of the vertical excitation energy (the blue shift due to
the use of a CASSCF equilibrium geometry is mostly compensated by an erroneous
red shift of the older 0-IPEA variant of CASPT2).

Finally, our calculations with a variety of highly-correlated approaches on reli-
able ground-state equilibrium geometries define a range of 2.20-2.37 eV for the ver-
tical excitation energy of the 11-cis model, with NEVPT2 theory yielding a value of
about 2.3 eV on the optimal M06-2X structure. This estimate should be preferably
confirmed by experimental findings but a comparison with available experiments
is unfortunately problematic. Even though the retinal chromophore has been exten-
sively studied in absorption experiments in solution [2,9,14], it is difficult to infer an
estimate of the gas-phase vertical excitation from these experiments. The absorption

94



4.7 Bibliography

spectrum in solution is highly dependent on the particular solvent, and counter-ions
induce significant blue shifts in the absorption spectrum since they strongly influ-
ence the extended π-electron system of retinal. For instance, the absorption maxi-
mum of all-trans RPSB in 20 different solvents [2] in the presence of CHCl2CO−

2

counter-ions ranges between 2.64 and 2.93 eV, and is therefore significantly higher
than the expected vertical excitation in the gas phase. Gas-phase photo-dissociation
experiments should instead allow a direct comparison with our and other theoret-
ical calculations. However, such comparison is also not straightforward since the
relation between photo-dissociation and optical absorption spectra is not simple and
is in fact the subject of active investigation and debate [49–51]. For RPSB, early
gas-phase photo-dissociation experiments on the 11-cis chromophore [18] produced
a spectrum with a strong band at 2.03 eV and a broad shoulder of slightly lower
intensity, which extends up to 2.34 eV. However, if we consider the experimental
evidence on the all-trans retinal, which we find to have the same excitation energy
as the 11-cis conformer, there are two rather different photo-dissociation spectra
produced by the same group, one with a main band at 2.00 eV and at least two addi-
tional shoulders [18], and the other with a practically flat plateau between 2.03 eV
and 2.34 eV [19]. Here, we will not discuss the interpretation and potential com-
plications of photo-dissociation experiments but only stress that the convergence of
our highly-correlated CASPT2, NEVPT2, and DMC excited-state calculations to-
gether with our careful calibration of the equilibrium geometry gives us confidence
in assigning the vertical excitation of the 11-cis RPSB at about 2.3 eV.
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[47] G. Ghigo, B. O. Roos, and P.-Å. Malmqvist, Chem. Phys. Lett. 396, 142
(2004).

[48] O. Valsson and C. Filippi, J. Chem. Theory Comput. 6, 1275 (2010).

97



Bibliography

[49] O. Valsson and C. Filippi, J. Phys. Chem. Lett. 3, 908 (2012).

[50] K. Chingin, R. M. Balabin, V. Frankevich, K. Barylyuk, R. Nieckarz, P. Sagu-
lenko, and R. Zenobi, Int. J. Mass Spectrom. 306, 241 (2011).

[51] M. W. Forbes, A. M. Nagy, and R. A. Jockusch, Int. J. Mass Spectrom. 308,
155 (2011).

[52] C. Angeli, R. Cimiraglia, S. Evangelisti, T. Leininger, and J.-P. Malrieu, J.
Chem. Phys. 114, 10252 (2001).

[53] C. Angeli, R. Cimiraglia, and J.-P. Malrieu, Chem. Phys. Lett. 350, 297 (2001).

[54] C. Angeli, R. Cimiraglia, and J.-P. Malrieu, J. Chem. Phys. 117, 9138 (2002).

[55] C. Angeli, M. Pastore, and R. Cimiraglia, Theor. Chem. Acc. 117, 743 (2007).

[56] P. Widmark, P. Malmqvist, and B. O. Roos, Theor. Chem. Acc. 77, 291 (1990).

[57] Electronic supplementary information (ESI), can be found at
http://dx.doi.org/10.1039/c2cp41387f.
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[65] F. Weigend, A. Köhn, and C. Hättig, J. Chem. Phys. 116, 3175 (2002).

[66] R. Send, O. Valsson, and C. Filippi, J. Chem. Theory Comput. 7, 444 (2011).

[67] K. G. Dyall, J. Chem. Phys. 102, 4909 (1995).

[68] C. Angeli, R. Cimiraglia, and J.-P. Malrieu, Chem. Phys. Lett. 317, 472 (2000).
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Chapter 5

Gas-Phase Retinal Spectroscopy:
Temperature Effects Are But a
Mirage†

We employ state-of-the-art first-principle approaches to investigate whether temper-
ature effects are responsible for the unusually broad and flat spectrum of protonated
Schiff base retinal observed in photo-dissociation spectroscopy, as has recently been
proposed. We first carefully calibrate how to construct a realistic geometrical model
of retinal, and show that the exchange-correlation M06-2X functional yields an ac-
curate description while the commonly used complete-active-space self-consistent-
field method (CASSCF) is not adequate. Using modern multiconfigurational per-
turbative methods (NEVPT2) to compute the excitations, we then demonstrate that
conformations with different orientations of the β-ionone ring are characterized by
similar excitations. Moreover, other degrees of freedom identified as active in room-
temperature molecular dynamics simulations do not yield the shift required to ex-
plain the anomalous spectral shape. Our findings indicate that photo-dissociation
experiments are not representative of the optical spectrum of retinal in the gas phase
and call for further experimental characterization of the dissociation spectra.

5.1 Introduction
The retinal protonated Schiff base (RPSB) chromophore represents a fascinating
archetype of a photosensitive biological component since it functions as light detec-
tor over a remarkably wide range of absorption energies in visual [1,2] (425-560 nm)
and archaeal [3] (480-590 nm) rhodopsins. To understand how the protein tunes ab-
sorption over so many wave-lengths, it is important to establish the spectral behav-
ior of retinal in the gas phase to discern intrinsic geometric and electronic features
from the response of the chromophore to the biological microenvironment. Photo-

†This chapter has been published as O. Valsson and C. Filippi, “Gas-Phase Retinal Spectroscopy:
Temperature Effects Are But a Mirage”, J. Phys. Chem. Lett. 2012, 3, 908–912
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induced dissociation spectroscopy [4,5] represents in principle an ideal experimen-
tal technique for this purpose as the measurement can probe charged molecules in
the gas phase at low target densities in the absence of external perturbations. For all-
trans RPSB, early dissociation spectroscopy experiments [4] produced an absorption
spectrum with a strong band at 600 nm and at least two additional shoulders (Fig-
ure 5.1a), while a more recent experiment by the same group [5] has obtained a spec-
trum with a practically flat plateau between 530 and 610 nm (Figure 5.1b). These
observations have separately received a high level of attention and have motivated
many theoretical attempts to quantitatively reproduce them [5–12]. Unfortunately,
the difference between the two spectra was not well rationalized experimentally nor
further characterized, for instance by intensity dependence studies. This is particu-
larly relevant since retinal is not the only chromophore for which multiple distinct
dissociation spectra have been produced depending on experimental factors such as
excitation laser power [13–16]. In measurements for the green fluorescent protein
chromophore, it has in fact recently been argued that the dissociation spectrum does
not reliably represent the optical spectrum of this system [15, 16].

The unusually flat profile of the dissociation spectrum was explained in terms
of temperature effects [5]. The RPSB chromophore could easily isomerize between
conformers with different orientations of the β-ionone ring with respect to the plane
of the conjugate chain (Figure 5.2). If these configurations are characterized by ex-
citations spanning the appropriate range, temperature fluctuations could be respon-
sible for the observed experimental plateau in the spectrum. The interpretation of
the dissociation spectrum of RPSB in terms of temperature effects was however put
forward by modeling the conformer structures with the complete-active-space self-
consistent-field [17] (CASSCF) method, which largely lacks inclusion of dynamical
correlation. This theoretical study cannot therefore be considered conclusive. In
fact, calculations employing a very different framework based on density functional
theory (DFT) indicate that temperature fluctuations might not significantly affect
absorption [18]. Consequently, the role of temperature effects on the gas-phase
spectroscopy of RPSB remains an open issue due to uncertainties both on the ex-
perimental and theoretical sides. Importantly, visual and archaeal rhodopsins differ
in their retinal conformers [3] and it is therefore relevant to assess whether internal
variations in the structure or the interaction with the protein pocket are responsible
for shifts in the spectrum.

Here, we present a careful investigation of the impact of conformational varia-
tions of the chromophore on its absorption properties. Importantly, we do not as-
sume that a given theoretical technique gives us the correct answer but carefully cal-
ibrate the approach employed to construct the structural model of the chromophore
in the ground state. This is a key point in our work since the role of an appropri-
ate choice of structures has been often neglected or largely overlooked in previous
studies. After we identify which structural models are representative of retinal in the
gas phase, we then analyze how to accurately compute the excitation energies of the
multiple conformers to elucidate the structural dependence of absorption in RPSB.
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Figure 5.1: The absorption spectra obtained for all-trans RPSB in dissociation spec-
troscopy experiments from a) Ref. 4 in 2006, and b) Ref. 5 in 2010.
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Figure 5.2: 6s-cis and 6s-trans conformers of RPSB.

5.2 Results

We first investigate the choice of theoretical method to construct the conformers for
the 6s-trans, 6s-cis(+), and 6s-cis(-) orientations of the β-ionone ring (Figure 5.2),
and to estimate the height of the barrier between them. We employ a selected set of
modern DFT functionals characterized by a different percentage of exact exchange,
namely, BLYP [19,20] (0%), B3LYP [21,22] (20%), M06-2X [23] (54%), and M06-
HF [23] (100%). This choice of exchange-correlation approximations is particularly
appropriate for retinal since it spans a significant range of percentages of exact ex-
change, which is one of the most important parameters influencing the structural
properties of this chromophore [24] (see also SI [25]).

For each functional, we perform a series of geometrical optimizations at con-
strained angles of the β-ionone ring, φ (Figure 5.2), while relaxing all other de-
grees of freedom. As shown in Figure 5.3a, the resulting potential energy curves
are rather different in particular as regards the height of the barrier between trans
and cis, which decreases when we increase the amount of exact exchange. The rel-
ative stability of the conformers also varies with trans/cis being favored at low/high
exchange. Finally, several structural features of the minima are also affected, most
notably, the twist angle of the β-ionone ring in the cis orientations and the bond
length alternation, both significantly increasing for higher amounts of exchange (see
SI [25]).

To establish which structures most reliably describe retinal, we compute the
ground-state energies of all geometries with an accurate highly correlated approach,
namely, the complete-active-space second-order perturbation theory (CASPT2) [27,
28]. As shown in Figure 5.3b, the M06-2X functional with its intermediate amount
of exact exchange leads to the most accurate description of the geometrical features
of retinal. The CASPT2 energies computed on the M06-2X structures are in fact
the lowest while the use of either lower or higher percentages of exact exchange
results in higher ground-state energies. The CASSCF structures display instead the
worst performance, yielding the highest CASPT2 ground-state energies. Therefore,
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Figure 5.3: (a) DFT and CASSCF potential energy curves as a function of the orien-
tation of the β-ionone ring, computed with different functionals (full symbols). The
percentage of exact exchange is given in parenthesis. (b) CASPT2 ground-state ener-
gies computed on the DFT and CASSCF ground-state geometries (empty symbols).
We also evaluate the CASPT2 energies on the CASSCF ground-state geometries
reported in Ref. 5 (star symbols) [26].
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CASSCF geometries are not appropriate to describe gas-phase retinal despite hav-
ing being widely employed for numerous retinal studies in the last decade. It is also
important to stress that the interpretation of the broad plateau in the dissociation
spectrum in terms of temperature effects was in fact based on the use of CASSCF
structural models [5]. For completeness, we compute accurate ground-state energies
precisely on the two geometries previously employed to explain the spectrum [5],
and obtain the two highest energy points [26] in Figure 5.3b.

Having established the reliability of M06-2X to describe the structural features of
retinal, we are now in a position to assess whether the presence of different isomers
might explain the flat plateau in the photo-induced dissociation spectrum. Since
the barriers between the isomers are of the order of 2 kcal/mol, they can be easily
overcome at room temperature over the time-scales of the action spectroscopy ex-
periments [5] with trapping times of 40 ms. The various conformers can therefore
coexist at room temperature but are their excitations compatible with the spectral
features observed in dissociation spectroscopy?

To answer this question, we compute the excitation energies of the RPSB con-
formers with two highly correlated approaches, namely, the CASPT2 method also
employed for the ground state, and the n-electron valence-state perturbation theory
(NEVPT2) [29]. The recently developed NEVPT2 method is more advanced than
CASPT2 and generally more accurate. The key results are summarized in Table 5.1,
where we report the vertical excitations computed on our M06-2X structures of the
6s-cis and 6s-trans conformers. Both methods predict that the excitations of the
three conformers are comparable, only differing by about 30 nm. Moreover, the
vertical excitations are clustered on the blue edge of the dissociation spectrum in
the range 520-560 nm. Therefore, these highly correlated approaches strongly sup-
port that the excitations of the three conformers are comparable and do not span the
experimental plateau extending between 530 and 610 nm.

Table 5.1: Vertical excitation energies (nm / eV) of the retinal conformers, computed
with CASPT2 and NEVPT2.

Geometry Conformer / φ CASPT2 NEVPT2
M06-2X trans / -170.1 561 / 2.21 551 / 2.25

cis(-) / -38.3 537 / 2.31 530 / 2.34
cis(+) / 41.8 532 / 2.33 523 / 2.37

CASSCFa trans / -185.7 544 / 2.28 566 / 2.19
cis(-) / -68.2 473 / 2.62 477 / 2.60

a Geometries from Ref. 5.

In Table 5.1, we also report the excitations computed on the CASSCF geome-
tries from Ref. 5 since the interpretation of the dissociation spectrum in terms of
temperature effects was based on the use of these geometries. The excitations of
the 6s-trans and 6s-cis conformers are different and the value for the cis orientation
estimated between 473-477 nm falls outside the experimental plateau. We note that
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our CASPT2 excitations differs significantly from the values of 547 and 620 nm ob-
tained in Ref. 5 for the cis and the trans conformers, respectively, with the use of
a different zero-order Hamiltonian. The IPEA Hamiltonian [28] employed in this
work yields on average more accurate excitations, and its superior performance is
here corroborated by the good agreement found between our CASPT2 values and
the NEVPT2 excitations. Consequently, we stress once again that our calibration of
the method to generate the structures as well the excitations clearly indicates that
CASSCF is not suitable to describe the structural features of RPSB.

Even though the conformers of retinal are characterized by similar excitations
clustering at the blue edge of the spectrum, it is still possible that retinal may visit
configurations with red-shifted excitations while fluctuating between the different
orientations of the β-ionone. To investigate this possibility, we compute the exci-
tation along the constrained path between the two ground-state minima as reported
in Figure 5.4. We observe that, as retinal rotates between the trans and the cis con-
figurations, the excited-state energy either roughly parallels the ground-state curve
or raises even further, yielding higher values for the excitation. Therefore, tempera-
ture fluctuations can induce retinal to visit conformations characterized by different
angles of the β-ionone ring but this motion will result in blue-shifted excitations
at wavelengths shorter than 520 nm. In summary, temperature fluctuations of the
β-ionone ring cannot explain the broad feature in the spectrum.
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Figure 5.4: Ground- and excited-state energies computed with CASPT2 on top of
M06-2X ground-state geometries.
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An obvious question is whether we have correctly identified the β-ionone angle
as being the degree of freedom responsible for the anomalous broadening of the ab-
sorption spectrum. To investigate the possible influence of other active coordinates,
we perform a room-temperature ab-initio molecular dynamics simulation of retinal
in the cis(-) configuration for about 23 ps. This study is computationally feasible
if we employ a generalized gradient approximation (0% exchange), and gives us a
good indication of the most relevant degrees of freedom at finite temperatures. In
agreement with previous studies [30], our dynamics reveals the particular activity
of three coordinates: i) the global bend of the chromophore, which can be moni-
tored via the C6−N16 distance, ii) the dihedral angle C10−C11−C12−C13, and iii)
the length of the C11−C12 bond, which is inversely correlated with the bond length
alternation in retinal (see Figure 5.5). We then further analyze these specific co-
ordinates with more accurate approaches. In particular, we employ the M06-2X
functional to compute a representative optimal path for constrained values of the
coordinate in a range centered on the cis(-) minimum plus/minus twice the fluctu-
ations as estimated along the molecular dynamics run (see SI [25]). Along these
three paths, we then evaluate the CASPT2 excitations. As shown in Figure 5.6, the
variations in these three coordinates do not significantly affect the excitations. A red
shift of less than 10 nm is observed when the C11−C12 bond is stretched in corre-
spondence to a bond length alternation shorter by about 0.02 Å. A similar red shift is
obtained for an increased C6−N16 distance, while varying the C10−C11−C12−C13

dihedral angle does not affect the excitation. Consequently, not only the different
orientations of the β-ionone ring but also the other degrees of freedom identified as
most active at room temperature do not lead to the required red shift to explain the
plateau in the photo-induced destruction absorption spectrum.
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Figure 5.5: Active coordinates at room temperature: The global bend of the chro-
mophore monitored via the C6−N16 distance, the dihedral angles C5−C6−C7−C8

and C10−C11−C12−C13, and the C11−C12 bond length.
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Å for the C11−C12 bond length, and 10◦ for the C10−C11−C12−C13 dihedral angle.

5.3 Discussion and Conclusion

In summary, we have employed here state-of-the-art first-principle approaches to
investigate the absorption properties of RPSB in the gas phase and the impact of
temperature effects on the spectrum. We first demonstrated the fundamental impor-
tance to carefully calibrate the method employed to generate the structure of this
chromophore, and found that M06-2X represents an accurate tool for this purpose
in contrast to the commonly used CASSCF method, which we proved is inadequate.
We then investigated the different conformations of the β-ionone ring, which are
found to be separated by low barriers and therefore easily accessible at room tem-
perature. These conformers are however characterized by rather similar excitations
and clustered at the blue edge of the photo-dissociation spectrum. Consequently, the
different orientations of the ring cannot be responsible for the observed broad and
flat plateau in the absorption spectrum. In addition, other degrees of freedom that we
identify as active in room-temperature molecular dynamics simulations do not lead
to the shift required to explain the anomalous spectral shape in terms of temperature
effects.

While the disagreement between our theoretical results and photo-destruction
experiments may appear distressing, we recall that experiments with dissociation
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spectroscopy appear to be plagued by potential complications such as the possible
presence of multi-photon dissociation channels and the consequent non-trivial de-
pendence of the shape of the spectrum on the excitation laser power [15, 16]. In re-
cent years, rather distinct spectra have been obtained for the same chromophore [13–
15], retinal included [4, 5], so that the correlation between dissociation and optical
spectra is becoming less clear with time. Our calculations for RPSB raise serious
concerns on the interpretation of photo-induced dissociation spectroscopy experi-
ments also for retinal. They provide compelling evidence that temperature effects
cannot be responsible for the flat plateau between 530 and 610 nm in the spectrum,
and that these model experiments cannot be considered representative of the optical
spectrum of retinal. Our theoretical findings as well as the significant difference be-
tween available photo-dissociation spectra of retinal [4,5] call for further experimen-
tal investigations and careful characterization of these spectra in particular through
intensity dependence studies.
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Chapter 6

Native Description of Visual
Absorption

6.1 Introduction
Rhodopsin [1,2] is the visual pigment responsible for dim light vision and is the most
extensively studied member of the family of visual opsin proteins, a large class of
G-protein-coupled receptors that respond to light and initiate the visual transduction
process in vertebrate [3, 4]. Most visual opsins share the same covalently linked
chromophore, the retinal protonated Schiff base (RPSB) molecule, while variations
in the chromophore-protein interaction tune the absorption maximum over a very
wide range of wavelengths from 420 to 570 nm [3, 4]. This remarkable spectral
tuning has prompted a large number of experimental [1–31] and theoretical [31–58]
studies that have attempted to understand the molecular mechanism underlying the
functioning of the visual opsins.

Due to the complexity of system, obtaining an accurate theoretical description
of the absorption in visual opsins does not appear to be a trivial task since we might
expect a strong dependence of the excitation energies on the various ingredients en-
tering in the calculations. Nevertheless, for Rhodopsin, many theoretical studies
have reported a remarkable agreement with the experimental absorption maximum
even though these studies often differ considerably in the theoretical approaches
employed and normally resort to various approximations in the treatment of the
chromophore-protein interaction. If we analyse these theoretical investigations more
closely, we discover that they often lead to very different conclusions as regards the
role of the protein environment in tuning the excitation energy of the chromophore.
A particularly interesting case is given by the studies of Ref. 34 and 57, which obtain
excitation energies of 2.47 eV and 2.42 eV, respectively, in rather good agreement
with the experimental absorption maximum at 498 nm (2.49 eV) [5]. At first sight,
these calculations appear to be quite similar since they start from the same crys-
tallographic structure and employ the same multi-reference perturbative approach
(CASPT2) to obtain the excitation. However, they reach very different conclusions
concerning the electrostatic effect of the protein environment on the excitation en-

113



6 Native Description of Visual Absorption

ergy of the chromophore. In Ref. 34, the main effect of the protein is due to the
counter-ion, which induces a significant blue shift of about 0.5 eV, while the rest of
the protein environment has a negligible effect. On the other hand, Ref. 57 obtains
a much larger blue shift of 1.2 eV due to the counter-ion, which is then quenched
by the rest of the protein environment (see Figure 1.5). These two studies employ
different methods to optimize the structural model of the system, which result in
different chromophore geometries. Differences in other aspects of the calculations
(e.g. protonation state of some residues) might further affect the response of the ex-
citation to the protein environment. Therefore, since these (and others) contradicting
studies cannot all be right, the apparent agreement with experiments is in most cases
due to a favorable cancelation of errors.

Despite the numerous theoretical investigations, it remains therefore unclear
whether we are in a position to accurately describe the absorption of opsins from
first principles and whether we have identified all necessary ingredients to achieve
this goal. It is clear that one should use an accurate approach to compute the exci-
tations but, even if we restrict ourselves to highly-correlated methods, this choice is
far from obvious as the various techniques yield very different results even for the
retinal chromophore in the gas phase [59]. Furthermore, for the description of the
chromophore-protein interaction, it has been pointed out that, to obtain accurate ab-
sorptions, the mutual polarization of the chromophore and the protein environment
should be be considered [40–42]. Nevertheless, the generally accepted procedure
is to employ a standard quantum mechanics in molecular mechanics (QM/MM) ap-
proach, where only the chromophore is described at the quantum level while the rest
of the protein environment is modeled by employing fixed, partial point charges,
normally taken from a particular classical force field. In this multiscale scheme, the
point charges polarize the quantum chromophore in its ground and excited states,
whereas the environment does not respond to the presence of the chromophore.
Finally, another important aspect of modeling an opsin is to account for the dy-
namical nature of the protein since thermal fluctuations will affect the structure, the
chromophore-protein interaction, and the resulting excitation energy. This point has
been largely ignored in most previous theoretical studies, which just consider a sin-
gle, static model of the protein. Furthermore, the protein is often taken to be the
available crystallographic structure, where only the chromophore or a small region
around it is relaxed, while the rest of the protein is kept fixed at the crystallographic
positions. The investigations which attempt to include thermal fluctuations do so in
a limited way, either by only performing classical molecular dynamics (MD) fol-
lowed by QM/MM geometrical optimization [47–49], or by performing QM/MM
MD where a part of the protein is kept fixed [50–52].

Here, we will explore these issues and establish which theoretical ingredients are
needed for an accurate description of the absorption of Rhodopsin. To achieve this
goal, we will employ a realistic model of Rhodopsin embedded in its native mem-
brane environment (see Figure 6.1), which was carefully equilibrated with classical
MD [60]. For this model system, we will perform extensive and fully unconstrained
QM/MM MD simulations to obtain an accurate structural description of the chro-
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mophore and of the thermal fluctuations of the chromophore-protein system at room
temperature. An absorption spectrum obtained at room temperature with a cheaper
but more approximate approach will allow us to select a set of geometrical config-
urations close to the middle of the band, for which we will compute the excitations
at a higher level of theory. In this step, we will not a priori assume the correctness
of a particular theoretical approach but carefully calibrate the computation of the
excitation energies with a wide range of highly-correlated methods. Furthermore,
with the use of enlarged quantum regions, we will explore whether the conventional
QM/MM scheme used to compute the excitation energies properly accounts for the
effect of the protein environment. Finally, we will compare our results with the sim-
pler theoretical procedure so often adopted in previous Rhodopsin studies [53–58],
and explain the reasons for the remarkable, fortuitous agreement with experiments
achieved in these studies.

Figure 6.1: The Rhodopsin dimer system used in the current work. The dimer is
embedded in an explicit membrane and the extracellular side is facing up. For clarity,
the hydrogens have been removed from the lipids.
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6.2 Methods

6.2.1 Model System
Our model system of the bovine Rhodopsin dark state is taken from a previous
study [60], and consists of two Rhodopsin monomers embedded in an explicit mem-
brane. As described in Ref. 60, the Rhodopsin dimer was equilibrated via classical
MD for 300 ns. We will give below the most relevant details of our model system
and refer the reader to Ref. 60 for further details.
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γ δ

β

Figure 6.2: The retinal protonated Schiff base (RPSB) with the Glu113 counter-ion
and the Glu181 residue. We also show the numbering used for the conjugated chain
of the RPSB (C5, C6, . . . , C15, N16) and indicate the side chain carbons of the Lys296
residue.

For the protein, all potentially charged amino acids, including the C- and N-
termini, are considered to be in their default protonation states except Asp83 and
Glu122 that are assumed to be neutral in line with FTIR experiments [19]. In par-
ticular, the Glu181 residue is deprotonated (charged). Histidine residues are consid-
ered to be protonated either at the Nδ position (His100, His211) or the N� position
(His65, His152, His195, His278). The retinal chromophore is covalently linked to
the Lys296 residue via a protonated Schiff base linkage, which we collectively call
the retinal protonated Schiff base (RPSB), as shown in Figure 6.2. The Cys110
and Cys187 residues are linked via a disulfide bond and two palmitic acid residues,
which act as membrane anchoring points, are bound to Cys322 and Cys323. As
shown in Figure 6.1, the Rhodopsin dimer is embedded in an explicit membrane
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modeled by 1-stearoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (SOPE) lipids
while explicit water molecules cover the cytoplasmic and extracellular sides. To ob-
tain an overall neutral system, four sodium ions are added. The system is placed in a
periodic cubic box with approximate dimensions of 130× 80× 100 Å3 with around
20000 waters and 300 lipids, which result in a complete model system of around
100000 atoms. The waters are described using the TIP3P force field [61] and the
AMBER/parm99 force field [62] is employed for all standard protein residues. The
force fields for the RPSB and the palmitic acid residues are described in Ref. 63,
while the AMBER/parm96 force field is used for the SOPE lipids. As described in
Ref. 60, the Rhodopsin dimer system model was equilibrated via classical MD for
300 ns in the NPT ensemble at a temperature of 310 K and a pressure of 1.05 bar.

6.2.2 QM/MM MD Simulations
In order to construct an unbiased starting structure for the QM/MM MD simulations,
we perform a clustering analysis [64] on the last 100 ns of the classical MD equi-
libration run. Each trajectory frame is ranked based on the number of neighboring
frames that are within 1 Å RMSD cut-off. The top-ranked frame and all its neigh-
boring frames then form a cluster. The frames corresponding to this cluster are then
removed and the ranking process repeated until all frames are assigned to a given
cluster. This results in a set of non-overlapping clusters of frames. We then use
the central structure from the most populated cluster as a starting structure for our
QM/MM MD simulations.

We perform the QM/MM MD simulations using the QM/MM scheme imple-
mented in the CP2K package [65]. This QM/MM scheme employs the Quickstep
QM code [66], the Fist MM driver, and a real-space multigrid technique for the
electrostatic coupling between the QM and MM regions [67, 68]. The QM region
is treated within density functional theory (DFT), while the MM region is modeled
using the AMBER force field described above. The DFT calculations are performed
in the generalized gradient approximation by employing the PBE [69] exchange-
correlation functional. In the DFT calculations, a mixed Gaussian and plane waves
(GPW) approach is used, where the wave function is described with a triple-zeta
valence basis set augmented with two sets of polarization functions (TZV2P) [70],
while the electron density is converged employing an auxiliary plane-wave basis set
with a density cutoff of 320 Ry. The Goedecker-Teter-Hutter (GTH) pseudopoten-
tials [71, 72] are employed to describe the core electrons.

Only the chromophore located in one of the two monomers is included in the QM
region while the other, together with the rest of the protein environment, is treated
at the MM level. We perform three different QM/MM MD simulations that differ in
the residues included in the QM region: Rho-1, the retinal protonated Schiff base
(RPSB); Rho-2, RPSB and the Glu113 counter-ion; Rho-3, RPSB, Glu113, and
Glu181. For the Glu113 and Glu181 residues, the QM/MM boundary is along Cα-
Cβ bond, while for the RPSB the boundary is along the Cα-Cβ bond of the Lys296
residue. We saturate the valency of the QM regions by adding hydrogen capping
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atoms to the carbon QM atoms at the QM/MM boundary. All simulations are per-
formed in the Born-Oppenheimer (BOMD) approximation within the ab initio MD
framework and with a time step of 0.5 fs. In each simulation, the QM region is ini-
tially optimized while the MM part is kept frozen. After thermalization and further
equilibration, data collection is started and each simulation is run for 15 ps in the
canonical (NVT) ensemble. A stochastic velocity rescaling thermostat [73] is em-
ployed to maintain the temperature at 300 K. To compute the geometrical averages
and the Zindo excitations, we use the last 7.5 ps, 7.3 ps, and 11.3 ps of the Rho-1,
Rho-2, and Rho-3 runs, respectively, and collect frames every 5 fs (10 time steps)
so that the total number of frames is 1491, 1450, and 2248, respectively.

6.2.3 Excited-State Calculations
For the Zindo calculations, we employ the Gaussian 09 code [74] with the default
settings. The TDDFT calculations with CAM-B3LYP [75] and LC-ωPBE [76, 77]
functionals are performed using the Gaussian 09 code and the 6-31+G* basis set.
For the CC2 calculations, we use the TURBOMOLE code [78] where we employ
the resolution-of-the-identity (RI) approximation [79], the ANO-L-VDZP [80] basis
set, and the aug-cc-pVTZ auxiliary basis set [81, 82].

The CASPT2 calculation are performed with the MOLCAS [83] code. Unless
otherwise stated, we use the default IPEA zero-order Hamiltonian [84] and report
the single-state (SS) CASPT2 values. We use a constant imaginary level shift [85]
of 0.1 a.u. and employ the ANO-L-VDZP basis set. For the CAS active space, we
include all 12 π electrons in the reference, and either 12 or 13 active π orbitals,
resulting in a CAS(12,12) or CAS(12,13) expansion. We use a state-average (SA)
CASSCF wave function with equal weights over either the two (S0 and S1) or three
(S0, S1, and S2) lowest-energy states.

For the NEVPT2 calculations, we use the strongly contracted (SC) variant [86–
88] as implemented in the ORCA 2.8 [89, 90] code, and use the same basis set and
SA-CASSCF wave function as in the CASPT2 calculations. The DMC calcula-
tions are performed with the CHAMP [91] code. In all DMC calculations, we use
a CAS(12,12) expansion, SA-CASSCF wave functions optimized over two states
with equal weights, and pseudopotentials with the corresponding double zeta basis
set [92] and with added s and p diffuse functions on the heavy atoms.

In the QM/MM excited-state calculations, we employ two different QM regions,
one including only the chromophore (RPSB) and the another including the chro-
mophore and the Glu113 counter-ion (RPSB+Glu113). For the RPSB, the QM/MM
boundary is along Cγ-Cδ bond of the Lys296 residues and for Glu113 it is along the
Cα-Cβ bond. The valency of the QM region is saturated by adding hydrogen capping
atoms at the QM/MM boundary. The MM environment is modelled by employing
partial point charges for MM atoms with the parameters taken from the AMBER
force field of the system described above. To avoid over-polarization of the QM
region, we turn off the point charges for a small group of MM atoms at the QM/MM
boundary.
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6.3 Results

6.3.1 QM/MM MD Simulations
As well know, the timescales accessible in QM/MM MD simulations are orders of
magnitude smaller than what is possible in classical MD simulations. This makes
the selection of a starting point in a QM/MM MD simulation a critical issue as the
initial structure must be representative of an average configuration of the system.
In this work, we make this selection in a unbiased way by using clustering analysis
on a 100 ns classical MD simulation to identify an initial structure. Starting from
this selected structure, we perform three different QM/MM MD simulations at room
temperature that differ in the QM region used: Rho-1 has the minimal QM region
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Figure 6.3: The hydrogen bonding network (HBN) around the chromophore in the
protein pocket: a) The HBN around the Glu113 counter-ion; b) the HBN around the
Glu181 residue.
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of the RPSB, Rho-2 adds the Glu113 counter-ion to the QM region, and Rho-3
additionally includes the Glu181 residue in the QM region. Each simulations is
run for a total time of 15 ps while we use the last 7 to 11 ps for the analysis and
calculations below.

All three QM/MM simulations show the same hydrogen bonding network (HBN)
around the chromophore in the protein pocket, which is well preserved from the
initial structure and stable throughout each simulation. The HBN can be divided
into two parts, one around the Glu113 counter-ion and the other around the Glu181
residue. As shown in Figure 6.3a, the Glu113 counter-ion is hydrogen bonded to a
crystallographic water, wat2b [16,17], and to Thr94, which is a residue known to be
important for the stability of the protein pocket [21,22]. In the HBN around Glu181
shown in Figure 6.3b, one oxygen of Glu181 is hydrogen bonded to Tyr191 and
Tyr192, while the other oxygen is hydrogen bonded to Tyr268 and a crystallographic
water molecule, wat2a [15–17]. This water molecule also forms a hydrogen bond
to Ser186 and the backbone of Cys187. Finally, another water molecule bridges the
Tyr191 and Tyr268 residues.

In the Rhodopsin literature, there has been a long debate on the protonation state
of Glu181, which we consider in our model system to be deprotonationed (charged).
We will not delve into this issue and refer the reader for a more detailed discussion
to Refs. 31 and 51, and references therein. However, we do note that throughout
the 100 ns classical MM simulation, the HBN around the Glu181 residue is very
stable, indicating that the protonation states used in our model, especially the one
chosen for Glu181, are accurate. This is also consistent with a previous classical
MD study [63] on a Rhodopsin monomer where a deprotonated Glu181 resulted in
stable HBN while a protonated Glu181 resulted in a disrupted HBN.

In Table 6.1, we show the relevant geometrical parameters for the three QM/MM
runs. For comparison, the geometrical parameters of the retinal chromophore opti-
mized in the gas phase are presented in Table 6.3. As observed in the crystallo-
graphic structures and expected from the location in the protein pocket, the geom-
etry of the chromophore is considerably distorted by the interactions with the pro-
tein environment with respect to the gas-phase geometry. Steric interactions in the
protein pocket significantly distort the conjugated chain of the chromophore from
planarity, as can be seen from the C11–C12 dihedral angle (φC10-C11-C12-C13). This
is also observed in the effective length of the conjugated chain since the C6–N16

distance (dC6-N16) is about 0.3–0.5 Å shorter than in the gas-phase geometry, indi-
cating a more bent chromophore. Finally, the electrostatic interaction between the
positively charged chromophore and the negatively charged Glu113 counter-ion in-
duces an increased bond length alternation (BLA) along the conjugated chain of the
chromophore.

We observe that the three runs differ considerably in the counter-ion distance
(dcounter-ion), which we define as the distance between the nitrogen on the RPSB and
the closer carboxylate oxygen on the Glu113 counter-ion. For the Rho-1 run, the
counter-ion distance is about 0.4 Å longer than for the Rho-2 and Rho-3 runs. This
also influences the BLA, which has a slightly smaller average value in the Rho-1 run.
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Table 6.1: Relevant geometrical parameters (see Figure 6.2) and Zindo results for
the QM/MM MD runs. Trajectory averages are shown together with their root mean
square fluctuations. Distances are in Å and angles are in degrees. The BLA is de-
fined as the difference between the averages of the single and double carbon-carbon
bonds lengths, and computed including the bonds between C5 and C15. For the
Gaussian fit to the Zindo absorption spectrum, we show the mean (µ), the standard
deviation (σ), and full width at half maximum (FWHM).

Rho-1 Rho-2 Rho-3
QM region RPSB RPSB RPSB

+ Glu113 + Glu113
+ Glu181

dcounter-ion 3.23± 0.10 2.77± 0.11 2.77± 0.11

dC6-N16 11.20± 0.17 11.19± 0.13 11.24± 0.18

BLA 0.051± 0.020 0.059± 0.020 0.057± 0.021

φC5-C6-C7-C8 −44.2± 10.1 −50.4± 10.8 −45.7± 9.8

φC10-C11-C12-C13 −17.6± 8.8 −14.4± 9.4 −11.9± 9.3

Zindo (S0→S1)
a) Average 2.34± 0.10 2.41± 0.12 2.42± 0.13
b) Gaussian fit to absorption spectrum
µ 2.33 2.40 2.41
σ 0.11 0.12 0.13
FWHM 0.25 0.28 0.30

All the QM/MM runs show the same HBN and have the same starting point so it is
clear that the difference lies in how the interaction between the chromophore and the
counter-ion is described. In the Rho-1 run, we have a quantum-classical interaction
while, in Rho-2 and Rho-3 runs, we have a quantum-quantum interaction. It is hard
to fully judge which description leads to a more accurate counter-ion distance as
comparison with other calculations and experiments yields a mixed message. Our
classical MD simulation has an average counter-ion distance of 2.73 ± 0.11 Å, and
most other theoretical studies [17,33,51,57] converge to a value of about 2.7 Å. On
the other hand, all Rhodopsin crystal structures [14–17] have a counter-ion distance
in the range of 3.1 Å to 3.9 Å. Fortunately, we will see below that the increased
counter-ion distance does not seem to significantly influence the excitation energies.
Finally, we note that the Rho-2 and Rho-3 runs exhibit very comparable geometrical
parameters and, as shown below, Zindo excitation energies. This indicates that is
not needed to treat the charged Glu181 residue as quantum in the QM/MM MD
simulations.
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6.3.2 Zindo Absorption Spectra
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Figure 6.4: Convergence of the Zindo average excitation energy with the size of
the cluster model. The smallest cluster includes only the chromophore (RPSB) and
additional residues are then added one by one. We also consider a cluster which
includes all residues within 5 Å from the RPSB (about 40 residues and 720 atoms).
The calculations are performed for a set 100 equispaced frames from the Rho-2 run.

For each of the three QM/MM MD simulations, we extract 1500–2000 uncor-
related frames from the last 10 ps of the simulations, which we use to obtain the
absorption spectra at room temperature. This large number of frames puts some con-
straints on the excited-state approach we can use, which must give reasonable results
and be economical. Here, we use the semi-empirical Zindo method, which surely
fulfills the criterium of being affordable. Even though Zindo has shown a reasonable
performance in benchmark studies, we need to keep in mind that Zindo often exhibits
red-shifted excitation energies as compared to more accurate approaches [93]. Here,
we use however the Zindo results mainly as a guide in identifying structures which
are in the relevant region of phase space, namely, which give excitation energies
close to the maximum of the theoretical absorption band.

The Zindo calculations are performed on cluster models that include the RPSB,
the Glu113 counter-ion, and other nearby residues we find to be important for the
absorption. To establish which cluster size gives converged excitations, we average
the excitation energies computed on clusters of increasing size extracted from a sub-

122



6.3 Results

set of 100 equispaced frames from the Rho-2 run, and show the results in Figure 6.4.
For the RPSB chromophore (M1 model), we obtain an average value of 2.26 eV and
adding the Glu113 counter-ion (M2 model) blue-shifts the average excitation energy
to 2.45 eV. The inclusion of the Glu181 and Ala292 residues (M4 model) gives the
highest excitation while, starting from the M5 model, each additional residue leads
to a red shift. The average excitation energy levels off for models M10 to M12
to a converged value of 2.40 eV. We also consider an extended model given by all
residues with at least one atom within 5 Å of the RPSB (about 40 residues and 720
atoms), which yields an average excitation of 2.40 eV, that is, equal to the values ob-
tained for the M10 to M12 clusters. It is therefore sufficient to use the M10 cluster
model for the Zindo calculations of the excitation energies. The M10 model includes
about 250 atoms and is shown in Figure 6.5.

Figure 6.5: The M10 cluster model used in the Zindo calculations, which includes
about 250 atoms.

With the M10 cluster, we now calculate the absorption spectrum by weighting
the Zindo excitation energies with their oscillator strength for the full set of frames,
and show the spectrum for the Rho-2 run in Figure 6.6. As shown in Table 6.1, we
find that the average Zindo excitation energies for the three runs are very similar
to the absorption maxima obtained in the Gaussian fits. Furthermore, the results for
the Rho-2 and Rho-3 runs are almost equal, which is consistent with the observation
above that the inclusion of Glu181 in the QM region of the QM/MM MD simulation
does not influence the structure of the protein pocket. The spectrum for the Rho-1
run is instead slightly red shifted by about 0.07 eV, and this shift can be explained
by the larger counter-ion distance and the slightly smaller BLA.
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Figure 6.6: Zindo absorption spectrum for the Rho-2 trajectory obtained with a
histogram where the excitations are weighted with oscillator strength (blue boxes).
We show also a Gaussian fit of the histogram (red line). For the histogram, we use
bins of 0.01 eV.

Finally, we note that, for the Rho-2 and Rho-3 simulations, the absorption max-
imum of about 2.4 eV is very close to the experimental value of 2.49 eV (498 nm).
Furthermore, for Rhodopsin, the inhomogeneous broadening at room temperature,
(i.e. the broadening of the spectrum due to thermal fluctuations in the structure) has
been estimated to be 0.16 eV [26], which is in good agreement with the full width at
half maximum of 0.25–0.30 eV for the Zindo spectra.

6.3.3 TDDFT Excitations
We employ time-dependent density functional theory (TDDFT) with the CAM-
B3LYP functional to refine the excitation energies of frames extracted from the
region of the Zindo absorption maximum. We select eleven frames, five from the
Rho-1, five from the Rho-2, and only one from the Rho-3 run as it gives identical
results as the Rho-2 run. For these frames, we compute the TDDFT excitations us-
ing as quantum region either the chromophore (RPSB) or the chromophore and the
counter-ion (RPSB+Glu113), without (None) and with (Full) the MM point charges
of the whole system. We also obtain the excitation energies of the M10 cluster used
in the Zindo calculations. We show the CAM-B3LYP results in Table 6.2 and in Fig-
ure 6.7. When we include the effect of the protein environment, the frames from all
runs display rather similar excitations even though the counter-ion distance is about
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0.4 Å longer for the Rho-1 run. Given the similarity in the excitations, we will not
distinguish in the following between frames from individual runs.

Table 6.2: CAM-B3LYP/6-31+G* vertical excitations energies (eV) for frames from
absorption maximum of the Rho-1, Rho-2, and Rho-3 runs.

Frame QM: RPSB RPSB+Glu113 M10
MM: None Full None Full None

Rho-1 1 2.49 2.68 2.71 2.69 2.58
2 2.31 2.58 2.61 2.59 2.51
3 2.33 2.67 2.64 2.65 2.53
4 2.45 2.70 2.69 2.71 2.56
5 2.38 2.69 2.67 2.70 2.57

Rho-2 6 2.36 2.64 2.71 2.66 2.60
7 2.42 2.63 2.72 2.62 2.53
8 2.38 2.65 2.71 2.62 2.58
9 2.38 2.63 2.78 2.66 2.59

10 2.38 2.68 2.78 2.70 2.62
Rho-3 11 2.36 2.65 2.72 2.65 2.61

Average - Fr 1–5 2.39 2.66 2.66 2.67 2.55
Average - Fr 6–11 2.38 2.65 2.74 2.65 2.59
Average - Fr 1–11 2.39 2.65 2.70 2.66 2.57

The distorted chromophore without MM charges (RPSB/None) has an average
excitation energy of 2.39 eV, which is rather close to the CAM-B3LYP value of
2.36 eV obtained for the RPSB model optimized in the gas phase (see Table 6.3).
Therefore, the increased BLA and significant distortion of the chromophore does
not considerably affect the excitation of the isolated chromophore. As expected,
adding the full protein environment by embedding the chromophore in a sea of
MM point charges (RPSB/Full) results in a blue-shift of about 0.2–0.3 eV. A sim-
ilar blue shift is obtained if the Glu113 counter-ion is added to the QM region
(RPSB+Glu113/None) and the further addition of the rest of the protein as MM
charges (RPSB+Glu113/Full) has almost no effect. Therefore, if the MM charges are
included, very similar excitations are obtained regardless of whether the counter-ion
is part of the QM region or not. Furthermore, in the excited states, we do not observe
charge transfer between the chromophore and the counter-ion. Consequently, if we
limit ourselves to a QM/MM description for absorption, we do not need to include
the counter-ion in the QM region as it role seems to be mainly electrostatic.

The CAM-B3LYP/MM excitations have an average of 2.65 eV and are there-
fore blue-shifted with respect to the experimental absorption maximum of 2.49 eV.
When going from the QM/MM description to the M10 cluster model, we obtain a
red shift which ranges between 0.05 and 0.15 eV as shown in Figure 6.7f. One may
ask if the red shift obtained with the cluster model is due to spurious charge transfer
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Figure 6.7: CAM-B3LYP (filled symbols) and LC-ωPBE (empty symbols) vertical
excitation energies for frames from the absorption maximum of the Rho-1, Rho-2,
and Rho-3 runs. We show the excitation energies computed with different QM/MM
models in panels a)–d), and with the M10 cluster in panel e). In panel f), we show
the shift in the excitation energies obtained when going from RPSB+Glu113/Full to
the M10 cluster. The order of the frames is the same as in Table 6.2.

problems, which often plague TDDFT calculations. The CAM-B3LYP functional is
however from the class of long-range corrected DFT functionals designed to mend
this kind of problems. In fact, we observe no indication of spurious intermolecular
charge transfer and, also for the large M10 cluster, the character of the excitation
has a dominant π → π∗ contribution on the chromophore as in the QM/MM calcu-
lations. Therefore, the red shift obtained with the cluster model is not an artifact of
approximate TDDFT but is due to the quantum description of the protein environ-
ment.
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In Figure 6.7, we also present TDDFT results obtained with the LC-ωPBE func-
tional, which is also a long-range corrected functional but has 100% exact-exchange
at long range as compared to 65% in CAM-B3LYP. As well known for singlet ex-
cited states [94], the LC-ωPBE excitations are blue-shifted with respect to to CAM-
B3LYP values but display the same trends. In particular, as shown in Figure 6.7f, the
red shifts obtained with the M10 cluster are very similar for LC-ωPBE and CAM-
B3LYP, confirming the validity of the CAM-B3LYP results.
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Figure 6.8: CAM-B3LYP (filled symbols) and LC-ωPBE (open symbols) excitation
energies computed on different cluster models extracted from frames 4 and 7.

In Figure 6.8, we show the CAM-B3LYP and LC-ωPBE excitations obtained
on the different cluster models extracted from frames 4 and 7. For both frames,
the CAM-B3LYP excitation energies nearly parallel the average Zindo values, being
systematically blue shifted. A similar behavior is observed for the LC-ωPBE values.
This suggests that also the TDDFT excitation energies like the Zindo ones are con-
verged for the M10 cluster and that we would therefore not observe further changes
by including extra residues.
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6.3.4 Highly-Correlated Excitations

Table 6.3: Vertical excitation energies of the 11-cis RPSB in the gas-phase computed
on DFT geometries. These results are from our previous study in Ref. 59 and are
presented for comparison with the values obtained in the protein.

Geometry
BLYP (0%) B3LYP (20%) M06-2X (54%)

BLA 0.024 0.033 0.051
dC6-N16 11.73 11.62 11.52
φC5-C6-C7-C8 -29.7 -33.5 -38.0

Vertical excitation energies (eV)
CAM-B3LYP 2.36 2.43 2.49
LC-ωPBE 2.39 2.48 2.61

CASPT2 2.12 2.20 2.30
NEVPT2 2.18 2.26 2.33
DMC 2.22(4) 2.37(3) -

To compute the excitation energies with various highly-correlated methods, we
consider a subset of only three frames from the eleven frames from the previous sec-
tion, that is, frame 4 from Rho-1, frame 7 from Rho-2, and frame 11 from Rho-3.
For these frames, we perform calculations with the approximate singles and dou-
bles coupled-cluster (CC2) method, two flavors of multi-configuration perturbation
theory (CASPT2) characterized by two different zero-order Hamiltonians, and the
more recent and advanced n-electron valence state perturbation theory (NEVPT2).
All these perturbative calculations are based on the same zero-order complete-active-
space self-consistent-field (CASSCF) wave functions. Finally, we also employ the
diffusion Monte Carlo (DMC) approach, which has been shown to perform well in
describing excited states. We note that we recently demonstrated that the more recent
flavor of CASPT2, NEVPT2, and DMC methods agree rather well for the excitation
energies of the chromophore in the gas phase [59], as also shown in Table 6.3.

The TDDFT results obtained in the previous section indicate that going be-
yond the conventional QM/MM description with the use of large quantum clusters
changes the excitation energies by a non-negligible amount. Unfortunately, while it
is possible to use large quantum models within TDDFT, a system of 250 atoms is out
of the question for most highly-correlated methods. Therefore, for the calculations
with the high-level methods, we will remain within a QM/MM scheme and compare
with the corresponding TDDFT/MM values in Table 6.4.

The CASPT2 excitations for the chromophore embedded in the MM charges
(RPSB/Full) are very comparable to the CAM-B3LYP excitations, and thus blue
shifted with respect to the experimental value. The behavior of the two approaches
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Table 6.4: Vertical excitation energies (eV) on selected frames from the absorption
maximum.

Method Fr. QM: RPSB RPSB+Glu113 M10
MM: None Full None Full None

CAM-B3LYPa 4 2.45 2.70 2.69 2.71 2.56
7 2.42 2.63 2.72 2.62 2.53

11 2.36 2.65 2.72 2.65 2.61
LC-ωPBEa 4 2.57 2.82 2.85 2.83 2.66

7 2.55 2.74 2.84 2.74 2.64
11 2.51 2.82 2.88 2.83 2.77

CC2b 4 2.03 2.59
7 2.08 2.49

11 2.16 2.54
CASPT2c 4 2.29 2.71 2.78f,g 2.75

7 2.22 2.61 2.80f 2.66
11 2.16 2.72 2.89f 2.80f

NEVPT2d 4 2.39 2.76
7 2.35 2.65

11 2.28 2.74
DMCe 4 2.52(3) 2.78(3)

7 2.73(3)
11 2.82(3)

a 6-31+G* basis set; b ANO-L-VDZP basis set;
c SS-CASPT2 using ANO-L-VDZP and CAS(12,13) over 2 states;
d NEVPT2/SC using ANO-L-VDZP and CAS(12,13) over 2 states;
e DMC using D+ basis and CAS(12,12) over 2 states;
f CAS(12,13) over 3 states; g MS-CASPT2

is however not the same since the CASPT2 method responds much more strongly
to the addition of the MM point charges: Adding the MM point charges to the iso-
lated chromophore (RPSB/None) results in a 0.4–0.6 eV blue shift for CASPT2,
compared to only 0.2–0.3 eV for CAM-B3LYP. As in the TDDFT calculations, the
addition of the counter-ion to the QM region has very little effect on the CASPT2
excitation energies once the MM charges are included. If we consider the NEVPT2
results, we observe a small difference of 0.1 eV between NEVPT2 and CASPT2
values for the isolated chromophore but, once the MM charges are included, the two
methods yield results in very good agreement, with NEVPT2 being at most 0.05
eV higher. The DMC results also agree rather well with the CASPT2 and NEVTP2
estimates, and are at most 0.1 eV higher. A similar good agreement was observed
for the retinal chromophore in the gas-phase [59] (see also Table 6.3). We note that
the NEVPT2 approach is known to be sensitive to the quality of the zero-order wave
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function and that can give unsatisfactory performance if the correction due to dy-
namical correlation is large [95]. However, for the results presented here, this is not
an issue. Finally, the CC2 excitations energies (RPSB/Full) of about 2.5-2.6 eV are
at variance with all other methods and in apparent agreement with the experimental
absorption maximum at 2.49 eV.

The CASPT2 approach has been extensively used in last decade to study the ab-
sorption properties of Rhodopsin and other visual opsins [53–58]. Our results differ
in the use of a more recent and improved formulation of the CASPT2 theory, as we
will discuss in more detail below. Employing the older formulation of the CASPT2
method as used in previous Rhodopsin studies results in excitations significantly red
shifted by 0.3 eV, in the range of 2.3–2.4 eV. A comparison of the two flavors of this
perturbative approach with other methods (NEVPT2 and DMC) with their balanced
description of static and dynamical correlation strongly indicates that the improved
CASPT2 formulation used here is more accurate.

In summary, we observe that TDDFT/CAM-B3LYP, CASPT2, NEVPT2, and
DMC yield very comparable results within the conventional QM/MM scheme with
the chromophore in the QM region and the rest of the protein treated as MM point
charges. The results obtained are 0.2–0.3 eV blue shifted as compared to the ex-
perimental absorption maximum at 2.49 eV. We stress again that, even though an
enlarged quantum region brings the TDDFT energies in better agreement with the
experimental value, a calculation with the same large QM region is not possible
with the other methods. Nevertheless, it is plausible that a similar (or larger, given
the stronger response of the high-level methods to the MM charges) variation in the
excitation energies would be obtained for a calculation with these highly-correlated
methods and the same large QM cluster.

6.3.5 Comparison with Previous CASPT2/MM Studies
As briefly mentioned in the previous Section, the CASPT2 approach in its older for-
mulation has been the method of choice for the investigation of the absorption of
Rhodopsin [53–58] in the last decade. These studies have employed a conventional
QM/MM scheme and generally reported a remarkable agreement with the experi-
mental absorption maximum, yielding results in a range of 2.3 to 2.6 eV. This must
be contrasted with our findings of significantly blue shifted excitations computed
with highly-correlated approaches and an MM environment. Here, we will show
that the agreement of previous studies appears to be fortuitous and that the reported
results depend very much on the precise details of the computational procedure em-
ployed.

The older formulation of the CASPT2 approach (CASPT2/0-IPEA) is based on
a different zero-order Hamiltonian than the one used in this work. The newer for-
mulation of the CASPT2 approach (CASPT2/S-IPEA) we use employs an improved
zero-order Hamiltonian, the so-called IPEA Hamiltonian, which was developed to
give on average more accurate results [84]. In our previous work on gas-phase reti-
nal [59, 96], we have shown that CASPT2/S-IPEA gives more accurate excitations
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in agreement with NEVPT2 and DMC methods, while the CASPT2/0-IPEA exci-
tation energies are at variance and systematically lower by 0.3 eV. The exact same
behavior is observed in the previous section for the Rhodopsin frames.

To model Rhodopsin, previous CASPT2/MM studies have used the available
crystallographic structures where only the geometry of the chromophore is opti-
mized with the low-correlation CASSCF method, which largely lacks the inclusion
of dynamical correlation. As we have shown for the RPSB in the gas phase, the
CASSCF method leads to an inadequate description for the structural model of reti-
nal and yields excitation energies that are 0.3 eV higher than those obtained with
more appropriate DFT structural models [59,97]. Another important difference with
our work is that previous CASPT2/MM studies have used very different protonation
states, especially in considering the Glu181 residues to be protonated (neutral). Fi-
nally, only the chromophore was included in the QM region while the rest of the
environment has been described by using Amber MM point charges, and no thermal
effects were included.

To further understand the discrepancy with previous CASPT2/MM studies, we
follow two routes. In the first route, we employ exactly the same structural model
as used in Refs. 57 and 58, which was constructed from the 1U19 [17] crystallo-
graphic structure (the model was kindly provided by one of the authors of Ref. 58,
N. Ferré). From this model, we also construct different structures either by chang-
ing the protonotation state of the Glu181 residue or by reoptimizing the orginal
CASSCF chromophore with DFT and the BLYP functional. In the second route, we
also start from the 1U19 crystallographic structure but protonate all residues as in
our model. We then keep the protein environment fixed and optimize the geometry
of the chromophore, with either CASSCF or DFT/BLYP.

Table 6.5: CASPT2/MM excitation energies (eV) computed with the Rhodopsin
(1U19) CASSCF/Amber model used in Refs. 57 and 58. We note that Glu181 is
protonated in this model.

CASPT2 Basis Excitation
0-IPEA 6-31G* 2.38

ANO-L-VDZP 2.22

S-IPEA 6-31G* 2.75
ANO-L-VDZP 2.63
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In Table 6.5, we present the CASPT2/MM excitation energies computed for the
original structure employed in Refs. 57 and 58, with different zero-order Hamil-
tonians and basis sets. For the older CASPT2/0-IPEA formulation, we only ob-
tain an excitation compatible with the experimental absorption maximum if we use
the small and unconverged 6-31G* basis set as normally done in these older stud-
ies [57,58], while a better ANO-L-VDZP basis leads to a value which is too low. The
CASPT2/S-IPEA formulation gives excitations systematically blue-shifted by about
0.4 eV. Clearly, we would be leaving the realm of ab initio calculations if we were to
adopt the point of view that certain approaches should be used in combination with
particular basis sets as it has been claimed in a recent Rhodopsin study [58]. Here,
we instead conclude that the apparent agreement of the CASPT2/0-IPEA formula-
tion with experiments is due to a favorable cancelation of errors.

Table 6.6: CASPT2/MM excitations (eV) obtained from different Rhodopsin (1U19)
models. The chromophore is optimized with either CASSCF or BLYP, using the
protonation state of Glu181 as indicated.

Model Geometry Glu181 CASPT2/S-IPEA
From Refs. 57 and 58 CASSCF Prot. 2.63

CASSCF Deprot. 2.96
BLYP Prot. 2.17
BLYP Deprot. 2.55

From present work CASSCF Deprot. 3.14
BLYP Deprot. 2.57

In Table 6.6, we consider different models constructed with different possible
combinations of the protonation state of Glu181 and methods used to optimize the
chromophore. This game leads to the interesting finding that different models may
accidentally lead to final excitation energies which are rather close. However, the
corresponding structures are in fact rather different as regards the geometry of the
chromophore and the chemical environment of the protein. Moreover, even though
the final excitation energies from the CASSCF model from Refs. 57 and 58 and our
B3LYP protein are equivalent, the conclusions on the effect of the environment are
rather different. The former model leads to a counter-ion quenching effect from the
rest of the protein of almost 0.9 eV while the latter is characterized by a correspond-
ing value of only 0.1 eV.
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6.4 Discussion and Conclusions

In this work, we have performed a careful and thorough investigation of the ab-
sorption properties of Rhodopsin with a wide range of theoretical methods. We
carefully constructed a model of Rhodopsin embedded in a realistic membrane en-
vironment, which was extensively equilibrated at room temperature at the classical
MD level. Starting from an unbiased initial structure selected with the help of clus-
tering analysis, we performed QM/MM MD simulations longer than 10 ps at room
temperature to obtain an accurate geometrical description of the retinal chromophore
and of the thermal fluctuations of the chromophore-protein system. The hydrogen
bond network around the chromophore was very stable throughout the classical and
the QM/MM MD simulation, which is an additional indication of the robustness of
our model. With the QM/MM trajectories, we have computed the Zindo absorp-
tion spectrum of Rhodopsin at room temperature, which we then used to identify
configurations from the phase space close to the Zindo absorption maximum.

For these selected structures, we computed the excitation energies with a variety
of ab initio approaches (TDDFT, multi-reference perturbation, and quantum Monte
Carlo methods) in combination with different schemes to model the chromphore-
protein interaction. Within the conventional QM/MM scheme of a small quantum
region (the chromophore with at most the counter-ion) embedded in classical point
charges, we obtained excitation energies at the TDDFT and highly-correlated level
that are 0.2–0.3 eV higher then the experimental absorption maximum at 2.49 eV.
The use of a larger quantum region (about 250 atoms) shifts the TDDFT excita-
tions to lower energies, and brings them closer to the experimental absorption max-
imum. As for the many previous multi-reference perturbation (CASPT2) studies
of Rhodopsin in a classical environment [53–58], claiming a remarkable agreement
with experiments, we demonstrated that this agreement is fortuitous and due to a
favorable cancelation of errors for the use of a superseded flavor of perturbative ap-
proach and an incorrect protein model. Finally, we showed that, when only one
structure is used (no thermal sampling), it is not difficult to obtain the correct an-
swer (the experimental absorption maximum) for the wrong reasons thanks to the
many parameters (e.g. protonation states, geometry, excited-state method, embed-
ding model etc.) one can play with in the description of a system as complex as
Rhodopsin.

An important finding of our study is that the description of the protein in terms
of classical, non-polarizable point charges as in conventional QM/MM schemes ap-
pears to be inadequate to describe the absorption of Rhodopsin. In the past, other
authors had reached similar conclusions [40–42] but these older studies were not as
definite as ours since they either lacked the inclusion of thermal fluctuations (they
used only one structure for the protein) or did not employ such a large range of the-
oretical methods to validate their conclusions. Our study is instead rather extensive
and strongly points to the need of a better environmental description in Rhodopsin.
Perhaps, this should not come as a surprise since the excitation involves a rather
large transfer of positive charge from the protonated Schiff base towards the β-
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ionone ring, and a large difference in dipole moment between the ground and the
excited state, estimated to be about 12 D for RPSB in solution [18]. Therefore, such
a change upon photo-excitation should induce a response (polarization) of the pro-
tein environment, an effect not taken into account by the fixed MM point charges
used in the conventional QM/MM scheme.

Here, we provided a better description of the environment by enlarging the quan-
tum region to include as many as 250 atoms. Obviously, this solution is not opti-
mal since these calculations are quite expensive already at the TDDFT level, and
are prohibitive for the high-level excited-state methods we consider reliable to de-
scribe retinal absorption. However, not all hope is lost. Another important finding in
our TDDFT calculations with large clusters is that the excitations in Rhodopsin do
not display intermolecular charge transfer but remain confined to the chromophore.
Therefore, a multiscale partition of the system in an active region and a surrounding
protein is still possible, and one might obtain more accurate excitation energies with
a better embedding model of a polarizable protein environment.

Even though we cannot employ such an enlarged QM region with the highly-
correlated excited-state methods, it is quite plausible that their behavior is rather
similar to the TDDFT one since, with a MM description of the protein, the TDDFT
excitation energies are very close to the multi-reference perturbation and quantum
Monte Carlo values. Therefore, if we assume that a larger QM region red-shifts
also the highly-correlated excitation energies by the same amount, the resulting es-
timates are in the range of 2.6–2.7 eV, that is, about 0.1–0.2 eV higher than the
experimental absorption maximum at 2.49 eV. This observation leads us to another
important question, which has been totally overlooked in previous ab initio studies
of Rhodopsin: Should we compare the vertical excitation energy with the location
of the experimental absorption maximum of Rhodopsin as commonly done in previ-
ous theoretical studies? If we look at the experimental absorption spectrum, it is not
clear that this is the correct way to proceed.

In Figure 6.9, we show the experimental absorption spectrum of Rhodopsin ob-
tained at room (293 K) and low (10 K) temperature [31]. In both cases, the absorp-
tion spectrum is very broad and unstructured with a large full width at half maximum
of about 0.5 eV. Furthermore, the intensity is still about 90% if we move 0.1 eV in ei-
ther direction from the maximum. Such a spectral shape can be due to a combination
of homogeneous and inhomogeneous broadening [24, 25]. Homogeneous broaden-
ing is defined as due to all mechanisms that broaden the spectrum of a single chro-
mophore (e.g. the lifetime of the excitation) while inhomogeneous broadening is due
to ensemble effects (e.g. fluctuations in the structure) that result in different excita-
tions for different chromophores. Numerous experimental studies have investigated
the absorption properties of Rhodopsin and Bacteriorhodopsin [23–30, 32] with for
instance resonance Raman spectroscopy [23–27] or spectral hole burning [27–29].
The picture that emerges from these studies is that the broadening can be partly
explained with strong vibronic effects related to the torsional mode around the ac-
tive C11–C12 bond in photoisomerization [25, 28, 32] and low-frequency torsional
modes on the chromophore [25, 26]. These vibronic bands are further broadened by
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Figure 6.9: The experimental absorption spectrum of Rhodopsin obtained at a) room
temperature (T = 293 K), and b) low temperature (T = 10 K). Figures adapted from
Ref. 31.

considerable inhomogeneous (and other homogeneous effects), which persist at low
temperature and result in a featureless absorption spectrum. Therefore, a remaining
disagreement of 0.1–0.2 eV between the theoretical vertical excitation and the lo-
cation of the absorption maximum in the broad experimental spectrum can well be
expected.

In conclusion, our calculations identify the necessary ingredients for an accurate
description of the absorption of Rhodopsin. We demonstrate the need of a realistic
structural model of the system obtained through extensive QM/MM molecular dy-
namics simulations, which account for the thermal fluctuations in the chromophore-
protein structure and ensure an accurate description of the chromophore. To estimate

135



Bibliography

the absorption maximum, it is important to employ not one but several configura-
tions of the system which are representative of the relevant region of phase space.
In addition, the use of a single structure may hide the limitations of the model, espe-
cially if this one structure happens to yield a plausible excitation energy as in many
previous studies of Rhodopsin. Finally, a proper description of the environment
as given by a larger quantum region is crucial in the computation of the excitation
energies of Rhodopsin since the conventional QM/MM model is inadequate.
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[57] A. Strambi, P. B. Coto, N. Ferré, and M. Olivucci, Theor. Chem. Acc. 118, 185
(2007).

[58] F. Melaccio, M. Olivucci, R. Lindh, and N. Ferré, Int. J. Quantum Chem. 111,
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Lett. 240, 283 (1995).

[80] P. Widmark, P. Malmqvist, and B. O. Roos, Theor. Chem. Acc. 77, 291 (1990).

[81] T. H. Dunning Jr, J. Chem. Phys. 90, 1007 (1989).
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Comput. 5, 2420 (2009).

[95] C. Angeli and M. Pastore, J. Chem. Phys. 134, 184302 (2011).

[96] O. Valsson and C. Filippi, J. Chem. Theory Comput. 6, 1275 (2010).

[97] O. Valsson and C. Filippi, J. Phys. Chem. Lett. 3, 908 (2012).

141





Chapter 7

Electronic Excitations of Simple
Cyanine Dyes†

The simplest cyanine dye series [H2N(CH)nNH2]+ with n=1,3,5,7,9 appears to be a
challenge for all theoretical excited-state methods since the experimental spectra are
difficult to predict and the observed deviations cannot be easily explained with stan-
dard arguments. We compute here the lowest vertical excitation energies of these
dyes using a variety of approaches, namely, complete active space second-order per-
turbation theory (CASPT2), quantum Monte Carlo methods (QMC), coupled cluster
linear response up to third approximate order (CC3), and various flavors of time-
dependent density functional theory (TDDFT) including the recently proposed per-
turbative correction scheme (B2PLYP). In our calculations, all parameters such as
basis set, active space, and geometry dependence are carefully analysed. We find that
all wave function methods give reasonably close excitation energies, with CASPT2
yielding the lowest values, and that the B2PLYP scheme gives excitations in satis-
factory agreement with CC3 and DMC, significantly improving on the generalized
gradient and hybrid approximations. Finally, to resolve the remaining discrepancy
between predicted excitation energies and experimental absorption spectra, we also
investigate the effect of excited-state relaxation. Our results indicate that a direct
comparison of the experimental absorption maxima and the theoretical vertical ex-
citations is not possible due to the presence of non-vertical transitions. The apparent
agreement of earlier CASPT2 calculations with experiments was an artifact of the
choice of active space and the use of an older definition of the zero-order Hamilto-
nian.

†This chapter has been published as R. Send, O. Valsson, and C. Filippi, “Electronic Excitations
of Simple Cyanine Dyes: Reconciling Density Functional and Wave Function Methods”, J. Chem.
Theory Comput. 2011, 7, 444–455
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7 Electronic Excitations of Simple Cyanine Dyes

7.1 Introduction

Cyanine dyes are characterized by a conjugated π-electron system connecting two
nitrogen atoms and carrying a positive charge [1]. They are naturally occurring as
red colorants in fly agaric mushrooms or red beet [2], and are of great industrial in-
terest for their application in solar cells [3], optical storage media (CDs, DVDs) [4],
cancer cell recognition [5], nonlinear optics [6], and as biomarkers for nucleic acid
detection [7]. This wide range of important applications has made cyanine dyes an
early target of theoretical studies aimed at demonstrating the predictive power of
computational approaches [8].

In the last two decades, efficient computational approaches for excited states
have been developed, which allow the description of large dyes and the fast screen-
ing of molecular libraries in search of specific excited-state properties [9]. In par-
ticular, time-dependent density functional theory (TDDFT) [10–12] has become the
method of choice for the study of large molecular systems, and has been successfully
employed to search for highly specialized chromophores and investigate several dye
families [13,14]. The efficiency of TDDFT comes in some cases at the price of lower
accuracy as compared to conventional highly-correlated quantum chemistry meth-
ods. It is for instance well known that the description of excitations with charge-
transfer, multi-reference, or Rydberg character is generally problematic in TDDFT.
Since none of these features appears to characterize the lowest excited state of the
cyanine dyes, one would expect TDDFT to be well suited for the description of this
class of systems.

Surprisingly, as early as 2001, Schreiber et al. [15] showed that the excitation
energies of the cyanine dyes obtained by TDDFT deviate by more than 1 eV from
the values obtained with the CASPT2 method, which is often regarded as one of
the most accurate excited-state approaches available. Since the examples chosen in
Ref. 15 were the simplest models of cyanine dyes, the result suggests that TDDFT is
not applicable to any member of this dye family. Until today, none of the available
density functionals significantly improves the agreement with the reference CASPT2
values given in Ref. 15. The reasons for the large errors in the TDDFT results for
the cyanine dyes are not understood.

Since the early work by Schreiber et al. [15], excited-state methods have seen
several important developments: (i) The efficient implementation of coupled-cluster
(CC) response methods in combination with the resolution-of-the-identity (RI) ap-
proximation represents a powerful single-reference complement to TDDFT [16];
(ii) efficient excited-state gradient methods render a large number of excited-state
properties accessible [17, 18]; (iii) developments in algorithms and hardware allow
the use of larger basis sets and higher-level theories; (iv) Quantum Monte Carlo
(QMC) methods can be used as alternative to CASPT2 and independent validation
of TDDFT [19–22]; (v) the CASPT2 method has been modified and generally im-
proved by the introduction of a novel definition of the zeroth-order Hamiltonian [23].

None of these developments have been fully exploited in recent calculations of
the cyanine dyes, where most efforts have instead been directed to apply different
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flavours of density functionals in order to improve the excitations and gain insight
into the shortcomings of TDDFT. Unfortunately, none of the used functionals has
yielded significant improvement and the insight gained has therefore been limited.
The only exception is the B2PLYP scheme by Grimme, which incorporates a pertur-
bative correction based on Kohn-Sham orbitals in a form similar to wave function
treatments [24, 25]. We note that the extensive excitation benchmark of wave func-
tion methods of Ref. 26 does unfortunately not include any member of the cyanine
dye family.

The present work represents a comprehensive treatment of the simple cyanine
dye series using several state-of-the-art excited-state methods such as CASPT2,
QMC, CC response methods up to third approximate order, and TDDFT also in
the long-range corrected and B2PLYP flavours, and the Tamm-Dancoff approxima-
tion. We give a detailed account of all parameters which may affect the calculation
of the excitations in the various approaches. Our discussion focuses on the lowest
bright excited state, and we enclose results for higher excited states as Supporting
Information.

All computational details are given in Section 7.2. We describe the dependence
of the excitation energies on the basis set and the method used to optimize the
ground-state geometry in Section 7.3.1. This is followed by the excitation ener-
gies calculated with CC methods (Section 7.3.2), CASPT2 (Section 7.3.3), QMC
(Section 7.3.4), and TDDFT (Section 7.3.5). In Section 7.4, we discuss the relative
performance of the theoretical approaches and their comparison with experiments.
Our conclusions are summarized in Section 7.5.

7.2 Computational Details

The ground-state structures are optimized within Hartree-Fock (HF), second-order
Møller-Plesset (MP2), and density functional theory (DFT). To compute the excita-
tion energies, we employ the complete active space self-consistent field (CASSCF)
method with its perturbative extension (CASPT2), quantum Monte Carlo (QMC)
methods, coupled-cluster (CC) methods, and time-dependent density functional the-
ory (TDDFT). The CC response calculations [27, 28] are performed at the singles
(CCS), singles and doubles (CCSD) [29], approximate second (CC2) [16, 30–32],
and approximate third (CC3) [33,34] orders. In the DFT calculations, the PBE [35],
PBE0 [36–38], the CAM-B3LYP [39] and the B2PLYP [24, 25] functionals are em-
ployed. The Tamm-Dancoff-Approximation is employed in some of the TDDFT
calculations and denoted with the prefix TDA [40].

The resolution-of-the-identity (RI) approximation [41] is used in all MP2 and in
some CC2 calculations, and is indicated by the abbreviations RI-MP2 [42] and RI-
CC2 [31]. All RI-MP2, RI-CC, and DFT calculations are performed with the TUR-
BOMOLE code [43]. B2PLYP calculations are based on an unreleased TURBO-
MOLE implementation and the additional on top program RICC by Grimme. [24,25]
The CC and CAM-B3LYP excitation energies calculated without the RI approxima-
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7 Electronic Excitations of Simple Cyanine Dyes

tion are obtained with the DALTON program suite [44]. The CAM-B3LYP excita-
tion energy of the largest dye with the triple-ζ basis is computed with the Gaussian
09 code [45].

The complete active space calculations are performed using MOLCAS 7.2 [46].
In the CASPT2 calculations, unless otherwise stated, we employ the default IPEA
zero-order Hamiltonian [23], and indicate if an additional constant level shift [47]
is added to the Hamiltonian. In the CASPT2 calculations, we do not correlate as
many of the lowest σ-orbitals as there are heavy atoms in the molecule. For some
models, we use the Cholesky decomposition of the two-electron integrals [48] with
the threshold of 10−8. The default convergence criteria are used for all calculations.

The program package CHAMP [49] is used for the QMC calculations. We em-
ploy scalar-relativistic energy-consistent Hartree-Fock pseudopotentials [50] where
the carbon and nitrogen 1s electrons are replaced by a non-singular s-non-local
pseudopotential and the hydrogen potential is softened by removing the Coulomb
divergence. Different Jastrow factors are used to describe the correlation with dif-
ferent atom types and, for each atom type, the Jastrow factor consists of an expo-
nential of the sum of two fifth-order polynomials of the electron-nucleus and the
electron-electron distances, respectively [51]. We also test the effect of including an
electron-electron-nuclear term. The starting determinantal components are obtained
in CASSCF calculations which are performed with the program GAMESS(US) [52],
and the final CAS expansions are expressed on the CASSCF natural orbitals. The
CAS wave functions of the states of interest may be truncated with an appropriate
threshold on the CSF coefficients for use in the QMC calculations. The Jastrow cor-
relation factor and the CI coefficients are optimized by energy minimization within
VMC and, when indicated in the text, also the orbitals are optimized along with
the Jastrow and CI parameters. The pseudopotentials are treated beyond the local-
ity approximation [53] and an imaginary time step of 0.05 a.u. is used in the DMC
calculations.

7.2.1 Basis Sets and Ground-State Structures
To investigate the basis-set dependence of the ground-state structures and of the
CC and TDDFT excitations, we use the ANO-L-VXZP basis sets [54] and Dun-
ning’s correlation consistent cc-pVXZ and aug-cc-pVXZ basis sets [55–58]. For
the ANO basis sets, the MOLCAS contraction scheme is employed, namely, ANO-
L-VDZP [3s2p1d]/[2s1p], ANO-L-VTZP [4s3p2d1f]/[3s2p1d], and ANO-L-VQZP
[5s4p3d2f]/[4s3p1d]. The ANO-L-VXZP basis set series is used in the CASSCF
and CASPT2 calculations.

In the QMC calculations, we use the Gaussian basis sets [50] specifically con-
structed for our pseudopotentials. In particular, we employ the cc-pVDZ basis, de-
noted by D, and the T� and Q� basis sets, which consist of the cc-pVDZ for hydro-
gen combined respectively with the cc-pVTZ and cc-pVQZ basis sets for the heavy
atoms. The D+, T�+, and Q�+ basis sets are constructed by augmenting the corre-
sponding basis with diffuse s, p, and d functions [59] on the heavy atoms. Basis
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7.3 Vertical Excitation Energies

functions with higher angular momentum than d are not included in the T�, T�+, Q�,
and Q�+ basis sets.

Unless indicated otherwise, the CC, CASPT2, and TDDFT excitation energies
are calculated with the ANO-L-VTZP basis set, and the QMC excitations with the
T�+ basis set. All excitation energies are computed on the RI-MP2/cc-pVQZ ground-
state structures with the exception of the TDDFT excitations which are obtained
using the PBE0/cc-pVQZ structures.

7.2.2 Auxiliary Basis Sets
In the RI-MP2/ANO-L-VXZP and RI-CC2/ANO-L-VXZP calculations, the corre-
sponding auxiliary basis sets are not available. To assess the impact of using the
ANO-L-VXZP basis sets in combination with the available aug-cc-pVXZ auxiliary
basis sets, we calculate the error in the correlation energy introduced by the RI ap-
proximation for carbon and nitrogen atom, and for H2. The quantity commonly used
to access the quality of an auxiliary basis set is defined as

α =
δRI

|∆E(MP2)| , (7.1)

where ∆E(MP2) is the MP2 correlation energy and δRI is given by

δRI =
1

4

occ.�

i<j

virt.�

a<b

| < ab||ij >exact − < ab||ij >RI |2
�a − �i + �b − �j

. (7.2)

The values of α obtained by combining the ANO-L-VXZP basis with the auxiliary
aug-cc-pVXZ basis sets are given as supporting information. When the aug-cc-
pVQZ auxiliary basis is employed, α < 0.05 ppm, which is in line with standard
auxiliary-basis-optimization conditions [58]. Therefore, we adopt this auxiliary ba-
sis in all our RI calculations.

7.2.3 Extrapolation of Excitation Energies
The extrapolated CC3/ANO-L-VTZP (exCC3) excitation energies are obtained as

ẼCC3

T
= ECC2

T
+ (ECC3

D
− ECC2

D
). (7.3)

This extrapolation formula is motivated by the observation that triple excitations are
less basis-set sensitive than single and double excitations [60–62].

7.3 Vertical Excitation Energies
The cyanine dye molecules studied in this work are shown in Figure 7.1. We con-
sider hydrogen-terminated dyes of increasing size, which we denote as CN3, CN5,
CN7, CN9, and CN11, respectively. All hydrogen-terminated dyes have C2v symme-
try. For these molecules, we also construct the equivalent dyes where the terminating
hydrogens are substituted by methyl groups.
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7 Electronic Excitations of Simple Cyanine Dyes

Figure 7.1: Hydrogen-terminated cyanine dyes considered in this work. Only one
of the two resonant structures of each molecule is shown. The other structure can be
obtained by having the first double bond at the other nitrogen atom.

7.3.1 Basis Set Convergence and Geometry Dependence
We employ the cc-pVXZ, aug-cc-pVXZ, and ANO-L-VXZP series to investigate
the basis set dependence of the CC and CASPT2 excitations, and give a complete
survey of the results in the supporting information (SI) [63]. In this section, we focus
on the smallest molecule, CN3, since it displays the largest dependence on the basis
set. The basis-set dependence of the TDDFT and QMC excitations will be discussed
separately.

The CC2 excitations of CN3 as a function of the basis set are shown in Fig-
ure 7.2. The correlation-consistent basis series gives the slowest convergence in the
excitation energy as a function of basis set size, and an error which is still as large
as 0.15 eV when a quadruple-ζ basis is employed. The inclusion of augmentation
completely cures the problem since the energy obtained with the double-ζ basis only
differs from the augmented quadruple-ζ value by 0.02 eV. The excitations computed
with the ANO series converge similarly to the augmented correlation consistent val-
ues, and the use of a triple-ζ basis yields the quadruple-ζ value within better than
0.01 eV.

The behavior of the CASPT2 excitations as a function of the basis set is shown
for CN3 in Figure 7.3. The excitations are obtained with the standard IPEA Hamil-
tonian (S-IPEA) as well as with the IPEA shift set to zero (0-IPEA) as in versions of
MOLCAS prior to 6.4. The energies obtained with the IPEA Hamiltonian are 0.2 eV
higher than the values obtained without the shift and the difference is independent
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Figure 7.2: CC2 vertical excitation energies of CN3 computed with different basis
sets. The ground-state MP2/cc-pVQZ geometry is used.
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Figure 7.3: CASPT2 vertical excitation energies of CN3 computed with (S-IPEA)
and without (0-IPEA) IPEA shift, and different basis sets. The ground-state MP2/cc-
pVQZ geometry is used.
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7 Electronic Excitations of Simple Cyanine Dyes

on the choice of the basis set. The behavior of the CASPT2 values with and without
the IPEA shift closely parallels what is observed for the CC2 excitations. In partic-
ular, the inclusion of diffuse augmentation is absolutely necessary when employing
the correlation consistent series while the ANO energies are well converged when a
triple-ζ basis is employed.

The optimal basis set for the present system is a correlation-consistent triple-ζ
basis with diffuse augmentation or an ANO triple-ζ basis. Depending on the pro-
gram, segmented or generally contracted basis sets can be more efficient. As MOL-
CAS is optimized for generally contracted basis sets, the discussion in the following
is based on ANO triple-ζ basis sets. These give CC2 and CASPT2 excitations which
are well converged in the basis sets for CN3 as well as for the other molecules (see
SI [63]). In the SI [63], we also include excitation energies calculated with the cor-
relation consistent Dunning basis sets, more common in CC calculations. The most
efficient choice in segmented contracted basis sets are the recent property-optimized
basis sets by Rappoport and Furche [64]. These became available very recently, so
we only include a Table with the corresponding excitations in the SI [63].
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Figure 7.4: CC2 and CASPT2 vertical excitation energies of CN3 computed on
different geometries. The ANO-L-VTZP basis is used.

The dependence of the CC2 and CASPT2 excitation energies on the method em-
ployed to optimize the ground-state geometry is shown for CN3 in Figure 7.4. As
in the case of the basis set size, the dependence is most significant for the small-
est molecule, CN3, as shown at the CC2 level in the SI [63]. Indepedently of the
approach used to compute the excitations and for all chain lengths, PBE and HF ge-
ometries give the lowest and highest excitations, respectively, while PBE0 and MP2
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geometries are in between. The largest difference between the excitations computed
on PBE and HF geometries is 0.24 eV at the CC2 level as obtained for CN3, and
is comparable at the CASPT2 level. The use of PBE0 and MP2 geometries gives
very similar excitations with the largest difference of 0.03 eV obtained for CN5.
Throughout this work, we use MP2 or PBE0 geometries to reduce the influence of
the choice of the ground-state structure on the vertical excitation, and focus on the
performance of the approach employed to compute the excitations.

7.3.2 Coupled Cluster Results
For all dyes, we give the convergence of the CC excitation energies with respect to
the size of the ANO basis set and the order of the CC expansion in Table 7.1. As
already discussed in Section 7.3.1, the triple-ζ basis set is the most cost efficient
choice as an increase to quadruple-ζ only changes the excitation energies by less
than 0.01 eV. The CC3 calculations for the largest dye, CN11, are not feasible at
the ANO-L-VTZP level, so we also compute the triple-ζ extrapolated CC3 results
(exCC3) using Eq. 7.3. When available, the CC3 results deviate from their extrapo-
lated counterparts by less than 0.03 eV and the error in the extrapolation is therefore
comparable to the residual basis-set error.

Table 7.1: Coupled cluster vertical excitation energies (eV) for the 11B1 state of the
cyanine dye series computed at the CC2, CCSD, and CC3 level with the ANO-L-
VXZP basis sets. The extrapolated CC3 values (exCC3) are obtained by adding the
difference between the double-ζ CC3 and CC2 values to the triple-ζ CC2 results.
The ground-state RI-MP2/cc-pVQZ structures are employed.

Molecule Basis CC2 CCSD CC3 exCC3
CN3 D 7.36 7.32 7.27 –

T 7.26 7.29 7.18 7.16
Q 7.26 7.30 7.18 –

CN5 D 5.02 4.98 4.89 –
T 4.97 4.98 4.86 4.84
Q 4.96 4.99 4.86 –

CN7 D 3.83 3.79 3.69 –
T 3.79 3.81 3.68 3.65

CN9 D 3.13 3.09 2.99 –
T 3.10 3.11 – 2.96

CN11 D 2.66 2.62 2.52 –
T 2.64a – – 2.53

a Computed with the RI approximation.

The behavior of the excitation energies at different CC levels reflect the typical
convergence of the correlation energy contribution [26]. With the ANO-L-VTZP ba-
sis, this convergence is characterized by an increase of less than 0.03 eV when going
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from CC2 to the full inclusion of doubles amplitudes in CCSD, and a decrease of
less than 0.14 eV when going from CC2 to CC3. The decrease in excitation energies
when going from CC2 to CC3 is larger than the one observed for the corresponding
bright state in butadiene (0.04 eV) or in the protonated Schiff base models (0.01
eV) [65, 66]. The T1-diagnostic [67] remains lower than the empirical threshold of
0.02, indicating that the Hartree-Fock determinant is a good zeroth-order description
of the ground state, and CC2 and CCSD results can therefore be considered reliable.

Further insight in our calculations can be gained by the amount of single- and
double-excitation contribution in the CC3 excitation energies. The single-excitation
contributions decrease from 89% to 84% when going from CN3 to CN11. The
double-excitation contributions increase from 11% to 16% when going from CN3
to CN11. This finding is in line with the growing difference between CC2 and
CC3 results upon lengthening of the chain. The correlation energy strongly depends
on double excitations for all molecules, and triple excitations contribute more than
in the analogous polyenes and protonated Schiff bases. The ground-state correla-
tion energy shows on the other hand little dependence on the chain length. For
all molecules, 92% of the CC3 correlation energy is obtained already at the CC2
level, and the CC3 correlation energy per electron is identical up to 0.1 mH for all
dyes. This finding indicates that electron correlation effects are important mainly in
the description of the excitation, for which an accurate description of correlation is
therefore essential.

7.3.3 CASPT2 Results
The choice of the active space significantly affects the CASPT2 energies of the cya-
nine dyes, particularly of the smallest ones. As shown below, previous calcula-
tions [15] employed active spaces that were too small and led to underestimated
CASPT2 excitation energies.

We extensively investigate the dependence of the excitations on the choice of
the active space, and give a complete account of our calculations in the SI [63]. In
Table 7.2, we present the most relevant subset of our results where the number of
active π orbitals of a2 and b2 symmetry included in the CAS is l times the number
of heavy atoms. This construction corresponds to l atomic orbitals of p character
per heavy atom and produces a series of balanced active spaces. We observe that
choosing l equal to 2 offers a good compromise between accuracy and computational
cost since the corresponding excitations are always converged to better than 0.05 eV.
For the largest dye, CN11, we cannot perform a calculation with l equal to 2 as the
use of 22 active orbitals is not feasible. However, the excitation energy of CN11
computed with l equal to 1 is converged within 0.05 eV as can be seen from the
excitations computed with larger CAS dimensions given in the SI [63].

Our optimal active space must be contrasted to the use of an active space with
an equal number of active electrons and active orbitals as adopted in Ref. 15. We
illustrate the shortcomings of this alternative construction by plotting the excitation
of CN3 as a function of the dimension of the active space in Figure 7.5. The use
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7.3 Vertical Excitation Energies

Table 7.2: CASPT2 vertical excitations (eV) of the 11B1 state computed with (S-
IPEA) and without (0-IPEA) IPEA shift and with different CAS(m,n) expansions.
All π electrons (m) in the reference are included and the number of active π orbitals
is n = i + j, where i and j are orbitals of a2 and b2 symmetry, respectively, as
specified by the notation [i,j]. The number of active orbitals is a multiple l of the
number of heavy atoms as obtained by using l atomic orbitals of p character per
heavy atom. We denote in boldface the optimal choice of active space in cost and
accuracy for CN3-CN7. For CN9 and CN11, the maximum feasible values of l are
2 and 1, respectively. Additional active spaces not constructed as multiple of l are
listed in the SI [63]. The ANO-L-VTZP basis set and the ground-state RI-MP2/cc-
pVQZ structures are employed.

Molecule CAS(m,n) CASSCF CASPT2
m [a2, b2] n [a2, b2] 0-IPEA S-IPEA

CN3 4 [2, 2] 3 [1, 2] 8.12 6.55 6.90
6 [2,4] 7.56 6.99 7.19
9 [3, 6] 7.63 6.97 7.14

CN5 6 [2, 4] 5 [2, 3] 5.46 4.23 4.62
10 [4,6] 5.32 4.46 4.69
15 [6, 9] 5.33 4.49 4.68

CN7 8 [4, 4] 7 [3, 4] 3.92 3.17 3.56
14 [6,8] 3.91 3.30 3.52

21 [9, 12] 3.96 3.30 3.49

CN9a 10 [4, 6] 9 [4, 5] 2.99 2.55 2.92
18 [8,10] 3.13 2.59 2.81

CN11a 12 [6, 6] 11 [5,6] 2.39 2.10 2.46
a Cholesky decomposition with 10−8 threshold.

of a CAS(4,4) space as in Ref. 15 yields an excitation which is underestimated by
as much as 0.4 eV, while the excitation computed with a CAS(4,6) expansion is
perfectly well converged. The dependence on the size of the CAS is slightly more
pronounced when the zero-order Hamiltonian with no IPEA shift is employed as in
Ref. 15 and, as expected, the difference between the excitations computed with and
without IPEA shift diminishes with increasing CAS size.

We summarize the CASPT2 excitations for our optimal choice of active space
as a function of the ANO basis sets in Table 7.3. As discussed previously, the use
of an ANO triple-ζ basis gives well converged excitations whether one uses the
zero-order Hamiltonian with or without the IPEA shift. The excitations computed
without the IPEA shift are 0.2 eV lower than the values obtained with the standard
IPEA Hamiltonian, independent of the basis. For CN11, the difference between
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Figure 7.5: CASPT2 vertical excitation energies of CN3 computed with (S-IPEA)
and without (0-IPEA) IPEA shift and with different CAS(4,n) expansions. The num-
ber of π electrons in the reference configuration is 4. The number of active orbitals
is n = i+ j, and i and j are orbitals of a2 and b2 symmetry, respectively, as specified
by the label [i,j]. The arrow indicates a balanced CAS size which corresponds to
use 2 atomic orbitals of p character per heavy atom, and represents an optimal com-
promise in accuracy and cost. The CAS(4,4) chosen in Ref. 15 is clearly inadequate.
The ground-state MP2/cc-pVQZ geometry is used.

the values computed with and without IPEA shift appears to be larger than for the
smaller dyes, and equal to 0.36 eV. The use of larger active spaces would however
reduce the difference to less than 0.25 eV also for CN11 (see SI [63]). This finding
reflects the fact that CASPT2 excitations computed with the IPEA shift converge
faster to the values obtained with larger CAS dimensions.
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7.3 Vertical Excitation Energies

Table 7.3: CASSCF and CASPT2 vertical excitation energies (eV) for the 11B1

state of the cyanine dye series computed with the ANO-L-VXZP basis sets and the
optimal active space. A CAS(n,m) expansion is used to compute the ground- (11A1)
and excited-state (11B1) energies, where n and m denote the number of electrons and
molecular orbitals, respectively. The ground-state RI-MP2/cc-pVQZ structures are
employed.

Molecule Basis CAS(n,m) CASSCF CASPT2
n [a2, b2] m [a2, b2] 0-IPEA S-IPEA

CN3 D 4 [2, 2] 6 [2, 4] 7.59 7.07 7.26
T 7.56 6.99 7.19
Q 7.56 6.99 7.20

CN5 D 6 [2, 4] 10 [4, 6] 5.25 4.53 4.74
T 5.32 4.46 4.69
Q 5.32 4.46 4.69

CN7 D 8 [4, 4] 14 [6, 8] 3.85 3.35 3.55
T 3.91 3.30 3.52
Qa 3.92 3.30 3.53

CN9 Da 10 [4, 6] 18 [8, 10] 3.08 2.63 2.83
Ta 3.13 2.59 2.81
Qa 3.14 2.59 2.81

CN11 D 12 [6, 6] 11 [5, 6] 2.39 2.13 2.46
Ta 2.39 2.10 2.46

a Obtained with the Cholesky decomposition with 10−8 threshold.
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7 Electronic Excitations of Simple Cyanine Dyes

7.3.4 QMC Results
In the determinantal component of the Jastrow-Slater wave functions, we choose the
active space identified as optimal in the CASPT2 calculations, and always optimize
at least the Jastrow and linear coefficients in energy minimization within variational
Monte Carlo. Other ingredients in the trial wave function may impact the excitation,
such as the choice of basis set, the truncation threshold on the CAS expansion, the
form of the Jastrow factor, and whether one optimizes also the orbitals in the deter-
minantal component. We investigate the effect of changing these parameters in the
wave function and summarize the results in Tables 7.4 and 7.5

Most tests are performed for the smallest dye, CN3, whose excitation appears
to be most sensitive to the features of the wave function. We find that including
electron-electron-nucleus terms in the Jastrow factor has little effect on the excita-
tion of CN3. While the VMC excitation slightly increases, the DMC excitation is
unchanged by the presence of these additional terms in the Jastrow factor. There-
fore, given the higher computational cost of these three-body terms, we only include
electron-electron and electron-nucleus correlations in the Jastrow factor for all other
dyes. Concerning the basis, we find that the D+ basis leads to excitations which are
clearly overestimated in VMC, while T�+ gives converged excitations when com-
pared to the Q�+ values both in VMC and DMC. Even though the shortcomings of a
D+ basis are more visible for CN3 than for CN5, we employ a T�+ as default basis
to compute the excitations of all dyes.

More critical for CN3 is the choice of the truncation threshold on the CAS ex-
pansion especially if one does not reoptimize the orbitals. When only the linear
coefficients are reoptimized in the presence of the Jastrow factor, the DMC excita-
tion obtained with the full CAS expansion is 0.1 eV lower than the value computed
with a threshold of 0.02. If the orbitals are reoptimized, the DMC excitations com-
puted with a full CAS and a truncated expansion become 0.1 and 0.2 eV lower than
the corresponding values obtained with CASSCF orbitals, and one recovers the same
DMC value when employing the full or truncated CAS expansion. For CN5, the op-
timization of the orbitals does not significantly affect the excitations and reducing
the truncation threshold on the CAS expansion has a smaller effect on the excitation
than for CN3. Therefore, for the larger dyes, we do not reoptimize the orbitals but
only make sure we have convergence with respect to the number of configuration
state functions included in the determinantal component. For all dyes, we collect the
best available QMC results computed with a T�+ and a two-body Jastrow factor in
Table 7.6.
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7.3 Vertical Excitation Energies

Table 7.6: VMC and DMC vertical excitation energies (eV) for the 11B1 state of the
cyanine dye series. For each molecule, we show the best available value from the
QMC calculations obtained using the T�+ basis set and a Jastrow factor including
electron-nuclear and electron-electron terms. A CAS(m,n) expansion is used to
compute the ground-state (11A1) and excited-state (11B1) energies, where m and n
denote the number of electrons and molecular orbitals, respectively. The threshold
on the expansion is also listed. Unless indicated, only the Jastrow and CI parameters
are optimized. The ground-state RI-MP2/cc-pVQZ structures are employed.

Molecule CAS(m,n) CASSCF VMC DMC
m [a2, b2] n [a2, b2]

CN3 4 [2, 2] 6 [2, 4] 7.62 7.48(1) 7.38(2) (a),(b)

CN5 6 [2, 4] 10 [4, 6] 5.30 5.09(1) 5.03(2) (a),(c)

CN7 8 [4, 4] 14 [6, 8] 3.89 3.90(1) 3.83(2) (c)

CN9 10 [4, 6] 9 [4, 5] 2.98 3.18(1) 3.09(2) (c)

CN11 12 [6, 6] 11 [5, 6] 2.37 2.68(2) 2.62(2) (d)

(a) Orbitals optimized including all external orbitals;
(b) Thr. of 0.0; (c) Thr. of 0.02; (d) Thr. of 0.04.
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7 Electronic Excitations of Simple Cyanine Dyes

7.3.5 TDDFT Results
The TDDFT excitations are computed with the PBE, PBE0, and long-range cor-
rected CAM-B3LYP functionals. We also employ the PBE0 hybrid functional in
the Tamm-Dancoff approximation (TDA-PBE0) as well as the hybrid functional
with a perturbative correction as proposed in Grimme’s non-self-consistent B2PLYP
scheme.

The TDDFT results are listed in Table 7.7, where we report the values com-
puted with the ANO triple-ζ basis, which are converged with respect to the basis
set to better than 0.02 eV (see SI [63]). The difference between the PBE and PBE0
functionals is largest for the smallest CN3 dye, where the PBE excitation is 0.22
eV lower than the PBE0 result. With increasing chain length, the PBE and PBE0
excitations approach each other, only differing by 0.06 eV for CN9. For all dyes,
the CAM-B3LYP results lie between the PBE and PBE0 results with PBE giving the
lowest excitation. The Tamm-Dancoff approximation and the B2PLYP scheme sig-
nificantly change the excitation energies of the cyanine dyes, as already pointed out
in Ref. 25. The TDA-PBE0 excitations are higher than the PBE0 results by about
0.4 eV for CN3 and 0.5 eV for the other dyes. The B2PLYP excitation energies are
0.25-0.32 eV lower than the PBE0 results.

Table 7.7: TDDFT excitation energies (eV) of the cyanine dye series computed with
the ANO-L-VTZP basis set and different functionals. The ground-state PBE0/cc-
pVQZ structures are employed.

Molecule PBE PBE0 CAM-B3LYP B2PLYP TDA-PBE0
CN3 7.40 7.62 7.55 7.30 8.03

CN5 5.22 5.33 5.26 5.05 5.84

CN7 4.11 4.18 4.12 3.92 4.71

CN9 3.44 3.50 3.44 3.25 4.02

CN11 2.98 3.03 2.97 2.80 3.54

The excitation of the smallest dye CN3 shows the strongest dependence on the
choice of the functional and, in particular, on the amount of exact exchange included
in the functional. While this finding appears to support the suggestion of Ref. 25
that the self-interaction error is significant for these dyes, we note that the inclusion
of exact exchange yields the same excitations as conventional generalized gradient
approximations (GGA) for the larger dyes. Therefore, as we discuss in Section 7.4,
the discrepancy between TDDFT and correlated methods observed also for the larger
dyes cannot be simply attributed to self-interaction error.

Finally, our results follow the general trend observed for a larger set of func-
tionals by Jacquemin et al. [68], namely, that GGA excitation energies are lower
than long-range corrected hybrid-GGA values while hybrid GGAs give the largest
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7.4 Discussion

excitation energies. We also note that our excitation energies deviate less than 0.08
eV from those of Ref. 68 and these small differences can be attributed to the use of
different basis sets and ground-state structures.

7.4 Discussion
In this Section, we first focus on the relative performance of the theoretical ap-
proaches employed to compute the vertical excitation energies of the cyanine dyes,
and then discuss their comparison with the available absorption spectra in solution.

7.4.1 Theoretical Comparison

Table 7.8: Vertical excitation energies (eV) for the 11B1 state of the cyanine dye
series. The CC, CASPT2/S-IPEA, and TDDFT excitations are computed with the
ANO-L-VTZP basis set. The best available QMC values obtained with the T�+ basis
set are shown.

Molecule PBE0 B2PLYP exCC3 CASPT2 DMC
CN3 7.62 7.30 7.16 7.19 7.38(2)
CN5 5.33 5.05 4.84 4.69 5.03(2)
CN7 4.18 3.92 3.65 3.52 3.83(2)
CN9 3.50 3.25 2.96 2.81 3.09(2)
CN11 3.03 2.80 2.53 2.46 2.62(2)

In Table 7.8, we summarize our most representative theoretical results for the
vertical excitation energies of the cyanine dyes, namely, the extrapolated CC3 ex-
citation energies (exCC3), the CASPT2 values computed with the standard IPEA
Hamiltonian (CASPT2/S-IPEA), and the TDDFT energies obtained with the PBE0
functional and the B2PLYP scheme, all computed with the ANO-L-VTZP basis. We
also list the best available DMC excitations computed with the T�+ basis set. For an
extensive comparison with CC2 or CCSD, CASPT2 with no IPEA shift, and other
DFT functionals and the dependence on the basis, CAS spaces, and geometries, we
refer the reader to the previous sections.

Comparing wave function methods, CASPT2 gives the lowest and DMC the
highest excitation energies, while exCC3 falls in between. This energetical order
holds for all chain lengths except for CN3 where CASPT2 and exCC3 give almost
identical results. The difference between CASPT2 and exCC3 ranges between 0.03
to 0.15 eV, and the differences are smallest for CN3 and CN11. The difference
between DMC and exCC3 is of opposite sign and lies between 0.09 and 0.22 eV,
and decreases steadily from CN3 to CN11.

To establish the relative accuracy of the wave function approaches, we recall
that the CASPT2 method is generally quite sensitive to the choice of the zero-order
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7 Electronic Excitations of Simple Cyanine Dyes

Hamiltonian. For the cyanine dyes, the use of a Hamiltonian with no IPEA shift as
it was standard prior to MOLCAS 6.4, yields excitation energies that are on average
0.2 eV lower than the values obtained with the recommended IPEA shift of 0.25
(see Table 7.3). When the standard IPEA value is adopted, CASPT2 is in better
agreement with other wave function methods indicating that this novel definition
of the zero-order Hamiltonian is more accurate and represents an improvement as
compared to previous CASPT2 calculations.

Previous CASPT2 calculations of the cyanine dyes by Schreiber et al. [15] are
also affected by another problem, namely, an inadequate choice of the CAS space
(see Figure 7.5). The combined effect of the choice of zero-order Hamiltonian and
the insufficient CAS dimension explains why the CASPT2 energies of Ref. 15 are
underestimated, in particular for CN3, where their excitation of 6.63 eV must be
compared to our value of 7.19 eV. Our excitations of the cyanine dye series should
therefore be regarded as more reliable CASPT2 reference values due to the use of
the IPEA Hamiltonian and a well converged size of active space.

The agreement between the exCC3 and DMC excitation energies is very satis-
factory with a difference of only 0.1 eV for the largest dyes. The larger discrepancy
of 0.2 eV for the smallest dye can be explained with the fact that the high excitation
of CN3 is clearly more sensitive to the description of static correlation and other
parameters in the wave function. For CN3, the DMC calculations were performed
employing the full active space and optimizing also the orbital parameters. The re-
sults are stable and further improvement not obvious. When comparing with DFT
methods, we will refer to the exCC3 numbers as they fall in between the CASPT2
and DMC, keeping in mind that the exCC3 excitations, in particular for the smallest
dyes, might be slightly underestimated.

The TDDFT excitations computed with the hybrid GGA PBE0 are about 0.35-
0.5 eV above the exCC3 results. As discussed in Section 7.3.5, the use of the non-
hybrid GGA PBE or the long-range corrected CAM-B3LYP does not lead to a signif-
icantly closer agreement with wave function methods. The same holds for the larger
number of GGA functionals including the highly parametrized Minnesota function-
als tested by Jacquemin et al. [68, 69]. These findings indicate a closer agreement
with wave function methods can only be obtained by going beyond the GGA and
hybrid-GGA levels.

It is evident that the excitation energies of the cyanine dyes are sensitive to the
correlation energy treatment. This can be seen in the spread observed among the
wave function methods and, at the TDDFT level, from the TDA-PBE0 results. Ap-
plication of the TDA further deteriorates the agreement with the wave function meth-
ods (see Table 7.7). Within the Tamm-Dancoff approximation, matrix elements that
mix excitations and deexcitations are neglected so that the excited state is described
by excitations only. It has already been stressed by Grimme and Neese [25] that
the present cyanines are one of the rare cases where deexcitations substantially con-
tribute to the excitation energy. Clearly, with the omission of the deexcitations, an
important component of correlation energy is neglected.

The only TDDFT approach that significantly improves the agreement with the
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7.4 Discussion

wave function methods is B2PLYP. The deviation from the exCC3 results ranges
between 0.14-0.29 eV and increases from CN3 to CN11. The agreement between
B2PLYP and DMC is almost perfect for the smaller dyes and the difference increases
to 0.2 for the larger models. Therefore, the discrepancy with either exCC3 or DMC
increases for excitations that have a larger double excitation character (as seen in
the exCC3 calculations). The improvement given by the use of the B2PLYP scheme
comes however at the cost of an increase in computational scaling, the introduction
of an additional empirical parameter, and other well-known limitations [25].

The improved behavior of B2PLYP with respect to GGA or hybrid functionals
can be understood from the presence of the additional perturbative correction. The
non-self-consistent B2PLYP correction is analogous to the (D)-correction in CIS(D)
excitation energies, or the MP2 energy correction in the ground state, but computed
with Kohn-Sham and not Hartree-Fock orbitals. B2PLYP is therefore an empirical
perturbative way to incorporate some double-excitation character into the TDDFT
excitation energies. In the ground state, the opposite-spin part of the MP2 energy
correction is identical to the first non-vanishing order of the RPA correlation energy
as shown by Eshuis et al. [70]. In the excited state, the good performance of B2PLYP
is thus an indication that the use of exact RPA correlation may cure the shortcomings
of TDDFT in the cyanine dyes by a satisfactory description of double-excitation
character. A non-empirical route to incorporate double excitations into TDDFT has
been formulated and applied for instance by Cave et al. on polyenes [71].
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Figure 7.6: Vertical excitation energies of the cyanine dye series in nm. The exCC3,
CASPT2/S-IPEA, and TDDFT results are computed with the ANO-L-VTZP basis
set. The best available DMC values obtained with the T�+ basis set are shown.
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7 Electronic Excitations of Simple Cyanine Dyes

Finally, as it is customary when discussing the cyanine dye series, we show the
theoretical excitation energies in nm in Figure 7.6. All methods appear to follow the
almost linear behaviour traditionally called the vinyl shift.

7.4.2 Comparison with Experiments

Table 7.9: Experimental absorption maximum (eV) of the cyanine dye series for
different solutions and substitutions at the nitrogen atoms (R1,R2). The dielectric
constant and the corresponding experimental temperature are given in brackets.

Nitrogen termination (R1,R2)
Molecule (H,H) (H,Me) (Me,Me)
CN3 – – 5.54d

CN5 4.34b 4.20b, 4.19c 3.97a, 4.01c, 3.96d

CN7 3.28b 3.15b, 3.14c 3.01e, 2.99a, 3.02c, 2.98d

CN9 – 2.53b, 2.51c 2.40a, 2.44c, 2.39d

CN11 – – 1.96a, 2.03c, 1.98d

a Ref. 72, measured in Methylendichloride (9.1, 20.0◦C).
b Ref. 73, measured in H2O (80.4, 20.0◦C).
c Ref. 74, measured in Methanol (32.6, 25◦C).
d Ref. 75, measured in Methylendichloride (9.1, 20.0◦C).
e Ref. 76, measured in Ethanol (24.3, 25◦C).

In Table 7.9, we collect the experimental absorption maxima for comparison with
the computed vertical excitation energies. The experimental spectra were recorded
in different solvents in the presence of ClO−

4
counterions, and all show broad absorp-

tion maxima for the lowest excited state. The position of the absorption maxima de-
pends only negligibly on the dielectric constant of the solvent with variations smaller
than 0.07 eV. Most experimental values were recorded for cyanine dyes with two
methyl-substituents on each nitrogen, and the absorption maxima of the methylated
species are shifted to lower energies compared to the values of the unmethylated
counterparts. The experimental methyl shift is 0.33-0.38 eV for CN5 and 0.26-0.30
eV for CN7 depending on the solvent.

As shown in Table 7.10, the experimental shifts upon methylation are theoreti-
cally well reproduced at the CC2 level with a value of 0.39 eV and 0.26 eV for CN5
and CN7, respectively, but largely overestimated by TDDFT/PBE0. The methyl
shift in the CC2 excitations diminishes from 1.19 eV for CN3 to 0.17 eV for CN11
as expected since the influence of the end groups should vanish in large molecular
chains. The geometries of the methylated dyes are obtained in C2v symmetry but
relaxing the symmetry constraint does not change the structure of the dyes with the
exception of CN3, where steric interaction between methyl groups at different nitro-
gens forces the CN3 dye into a non-planar structure of C2 symmetry. Recomputing
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Table 7.10: RI-CC2 and TDDFT/PBE0 excitation energy (eV) of the 11B1 state
for the methylated streptocyanine dye series computed with the ANO-L-VTZP ba-
sis sets. The RI-MP2/cc-pVQZ and PBE0/cc-pVQZ ground-state structures in C2v

symmetry are employed for the CC2 and TDDFT calculations, respectively.

Molecule CC2 TDDFT/PBE0
(H,H) (Me,Me) (H,H) (Me,Me)

CN3 7.26 6.07 7.62 6.00
CN5 4.97 4.58 5.33 4.75
CN7 3.79 3.53 4.18 3.81
CN9 3.10 2.90 3.50 3.23
CN11 2.64 2.47 3.03 2.82

the excitation energies at the CASPT2 and CC2 level on the C2 structure of CN3
only increases the excitations by 0.07 eV and 0.06 eV, respectively.

The basis for a comparison between computed vertical excitation energies and
experimental absorption maxima is the assumption that the transition probability
is largest at the ground-state minimum and when the transition is vertical, that is,
when ground- and excited-state structures are identical. Examples where these as-
sumptions are not satisfied are numerous [77, 78] but we restrict the discussion here
to the validity of the comparison for the cyanine dye series.

Figure 7.7: Excited-state minimal geometries of the CN3 and CN5 dyes obtained
with RI-CC2 and the ANO-L-VTZP basis sets.

The calculation of the absorption spectrum of the cyanine dyes using standard
schemes is not possible here since it requires the existence of an excited-state min-
imum. Relaxing the excited state in C2v symmetry at the CC2 level yields Stokes
shifts of almost 1 eV as shown in Table 7.11. Further relaxation of CN3 and CN5
without symmetry constraints leads to the highly twisted structures shown in Fig-
ure 7.7. Clearly, absorption spectra based on harmonic potentials in the excited state
cannot be calculated for these systems.
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Table 7.11: Vertical and constrained-adiabatic excitation energies (eV) for the 11B1

state, obtained with RI-CC2 and the ANO-L-VTZP basis sets. Excited-state geom-
etry optimizations are restricted to C2v symmetry. The stokes shift is the difference
between vertical and C2v-constrained adiabatic excitation energy. Relaxing the pla-
narity constraint for CN3 and CN5 indicates that there is no planar minimum.

Molecule Eexc (eV) Stokes shift C2v

Vertical Adiabatic C2v

CN3 7.26 6.29 0.97
CN5 4.97 4.64 0.33
CN7 3.79 3.65 0.14
CN9 3.10 3.01 0.09
CN11 2.64 2.58 0.06

The large Stokes shifts given in Table 7.11 explain the broad absorption max-
ima in the experiments. Within slight variation of the ground-state geometry, a
large number of vibrational states at different energies can be reached if the Franck-
Condon region of the excited state is distant from any minimum. Moreover, the
fact that a relaxed long-lived excited-state structure is most likely non-existent also
increases the likelihood of non-vertical transitions. We therefore conclude that the
comparison between the computed vertical excitation energies and the experimental
absorption maxima is not reliable, and certainly not suitable to assess the perfor-
mance of high-level computational methods.

In fact, the direct comparison of calculated vertical excitation energies and ex-
perimental absorption maxima shows that CC2 results for the methylated dyes are
on average 0.5 eV above the experimental data. The differences range from 0.44
eV for CN11 to 0.62 eV for CN5 and are dependent on the solvent. The deviations
of the vertical excitations from the absorption maxima for the methylated species
are consistent with the values obtained for the unmethylated dyes. Our CASPT2
excitation energies computed with the recommended IPEA zero-order Hamiltonian
and carefully converged dimensions of the active space lie 0.34-0.35 eV above the
experimental values. The apparently better agreement obtained in the older work by
Schreiber et al. can be explained with their use of an inadequate active space as well
as the use of a different zero-order Hamiltonian. The zero-order Hamiltonian used
in our work was introduced a few years after the publication of Schreiber’s results,
and is on average more accurate.

In summary, all methods give vertical excitation energies above the experimental
absorption maxima with CASPT2 yielding the lowest values but still more than 0.3
eV higher than the experiments. The different wavefunction approaches yield very
similar results, and all lie well above the experimental values. This supports our no-
tion that the experimental absorption maxima correspond to nonvertical transitions.
The influence of the solvent and the counterion are not included in our computa-
tional description and may further contribute to the discrepancy between theory and
experiment.
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7.5 Conclusion

For almost a decade, the simple cyanine dyes studied in this work have represented
an intriguing and problematic case for TDDFT and a challenge for the development
of new density functionals. The availability of accurate theoretical vertical excita-
tions for these dyes is therefore very important to assess the performance of existing
or novel TDDFT approaches. With the present work, we offer carefully bench-
marked reference values computed with CASPT2, QMC, CC, and various flavours
of TDDFT as aid for future developments. Our analysis based on such a large vari-
ety of excited-state methods gives a broad perspective on the parameters influencing
the excited-state description.

We find that previous CASPT2 calculations [15] do not offer a reliable bench-
mark for the cyanine dyes since the chosen active space was inadequate and led
to a severe underestimation of the CASPT2 excitations, with errors as large as 0.6
eV for the smallest CN3 dye. Our CASPT2 calculations are superior to these older
studies in the use of the improved zero-order IPEA Hamiltonian and a balanced and
well converged choice of the active space. Even though the empiricism introduced
by the choice of zeroth-order Hamiltonian renders the assessment of CASPT2 cal-
culations more difficult, the CASPT2 excitations obtained with the recommended
IPEA shift appear to be more reliable than those computed without this shift, as
the IPEA values are energetically closer to the extrapolated CC3 and DMC results.
With our improved CASPT2 vertical excitations, we find that the agreement among
all wavefunction methods is generally quite reasonable with the largest deviations
being observed for the smaller dyes, which appear most sensitive to the treatment of
static correlation.

Consequently, the overestimation attributed in past to TDDFT when comparing
to older CASPT2 calculations is now not as severe. Nevertheless, the performance of
standard GGA and hybrid GGA functionals is not satisfactory and our calculations
indicate that the discrepancy between TDDFT and wave function methods is due
to an insufficient description of double-excitation character at the GGA level. The
B2PLYP functional is an empirical scheme to partially incorporate double excitation
character and it significantly improves the description in the cyanine dyes, showing
the best agreement with CC3 and DMC results.

Since all wavefunction methods are in close agreement and the calculations ap-
pear rather robust, we consider the corresponding excitations trustworthy. It there-
fore remains an open question why the theoretical results disagree with the location
of the absorption maxima in the experimental spectra in solution. Quite surprisingly,
we find that the addition of methylation significantly lowers the vertical excitations
of the smallest dyes bringing them in closer agreement with the experimental ab-
sorption maxima of the methylated species. Nevertheless, the remaining discrep-
ancy between theory and experiment is quite large and we attribute it to the presence
of non-vertical transitions. In principle, one could prove or disprove this statement
by a direct simulation of the absorption spectra. However, these simulations are not
straightforward due to the lack of excited-state harmonic potentials and excited-state

167



Bibliography

minima. We find that the relaxation of some of the smaller dyes in planar symmetry
leads to Stokes shifts as large as 1 eV and further unconstrained relaxation yields
highly distorted structures that render the reconstruction of the spectra impossible.
Clearly, a direct comparison of the experimental absorption maxima and the ver-
tical excitation energies is not reliable and should not constitute the basis for the
assessment of theoretical methods.
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